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MEMBERSHIP-SET PARAMETER ESTIMATION VIA

OPTIMAL BOUNDING ELLIPSOIDS ;

Abstract

In the last few years, there seems to have been a resurgence of interest in the
membership-set-theoretic approach to parameter estimation. This report concentrates on

the optimal bounding ellipsoid (OBE) approach to membership-set parameter estimation.
with emphasis being placed on the performance of one particuir ORE algorithni in non-

ideal conditions. It is first shown that OBE algorithms offer distinct advantages over
commonly used recursive parameter estimation algorithms like the recursive least-squares

(RLS) algorithm in some real-life environments. Then the extension of a particular OBE

algorithm to the problem of paiameter estimation with unobservable but bounded inputs

(ARMA parameter estimation) is discussed in some detail. The problem is important

because, in many signal processing applications, the inputs to the system under

consideration are unknown. Analysis of the extended algorithm shows that under some
conditions, the extended algorithm yields 100% confidence intervals for tLhe paameters at

every sampling instant. This feature does not appear to be present in any other existing
ARMA parameter estimation algorithms. Furthermore, the transient performance of this

algorithm is observed to be superior to that of the extended least-squares algorithm. Finite

precision effects of one of the OBE algorithms are also studied via analysis of error
propagation in the algorithm and -through simulations- The analysis shows that the

algorithm is stable with respect to errors due to finite word-length computation and

storage. Simulation results demonstrate the superiority of the algorithm to the

conventional recursive least-squares algorithm for small word-lengths. Finally, analysis

of the tracking characteristics of one of the OBE algorithms is performed. It is shown that

the algorithm is capable of tracking small time variations in the parameters. Since large
variations may cause the algorithm to fail, a rescue procedure is proposed which can

enable the algorithm to also track large time variations. Simulation results demonstrate

that the tracking capability of the algorithm is comparable to that of existing adaptive

filtering algorithms.

*This report is a reproduction of Ph.D. dissertation ot Ashok K. Rao, Department of
Electrical and Computer Engineering, University of Notre Dame, Notre Dame, Indiana,
August, 1989. This work has been supported, in part, by the National Science
Foundation under Grant MIP 87-11174 and , in part, by the Office of Naval Research
under Contracts N00014-87-k-0284 and N00014-89-J- 1788
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CHAPTER I

MEMBERSHIP-SET PARAMETER ESTIMATION

1.1 Introduction

System identification deals with the formulation of mathematical models of dynamical

systems based on input and output data records. The formulation of a model is usually

done in two stages [Ljung, 1987]. In the first stage, if the dynamics of the unknown

system are known, then a set of candidate models (the model set) can be specified. In

other cases, standard model sets (black box models) can be used without reference to the

actual system dynamics. The model set itself, is just a mathematical relationship between

the system variables. It could be in continuous time or discrete time. It could also be

characterized as being linear or nonlinear, deterministic or stochastic. The model set

usually contains unknown quantities, which are termed the unknown parameters of the

model. The next stage of system identification uses the input-output record and other

information to obtain the 'best' model from the model set by choosing the unknown

parameters appropriately. This stage of identification has been termed parameter

estimation in the literature. In the classical approach, once the system model (with an

unknown parameter vector 0*) has been formulated, then a predictor model (with an

adjustable parameter vector 0) is formed, which, yields at every instant of time, a

prediction of the system output, based on past information. The predicted output is a

function of the parameter vector 0.Then, a criterion of fit is chosen. Perhaps the most

widely used criterion is the mean squared prediction error criterion, where the prediction



error is the error between the system output and the predictor model output. Once a

criterion of fit is chosen, the parameter estimate is chosen to be that value of 0 which best

fits the criterion. Thus least-squares parameter estimates minimize the mean or average

squared prediction error.

System identification forms the core of most adaptive signal processing and adaptive

control techniques. In telephony, for example, echo cancellation is required for long

distance speech communication [Messerschmitt, 1984]. In the transmission of speech,

echos arise primarily due to leakage through the far end hybrid. Speech echo cancellers

usually model the hybrid as a FIR filter and adjust the parameters of the predictor filter

(also a FIR filter) to minimize the mean-squared error between the echo and the predictor

filter output. In high resolution spectral estimation, the signal of interest is usually

assumed to be a sum of sinusoids in noise. This signal is often modeled as the output of

an IIR filter driven by white noise. The parameters of the filter are then estimated arid

used to construct an estimate of the spectrum. In adaptive control, a model of the

unknown plant is first formed. A common model used is the ARX model described in the

next section. The estimated model parameters are then used by the controller to generate

the control signal.

Most system model sets incorporate a disturbance term which can represent

observation noise or modeling uncertainty. This noise term is usually assumed to be a

stochastic process. Some statistical estimation schemes such as maximum likelihood

estimation require precise knowledge of the probability density function of the noise. The

simpler least-squares schemes require the noise to be white in order to obtain unbiased

parameter estimates. If the noise is not white, then unbiased estimates can be obtained by

modeling the noise term as a linear regression process. This approach is used in

extended least-squares(ELS), generalized least-squares (GLS), recursive maximum



likelihood (RML) [Ljung, 19831, output error meuods [Goodwin, 19841. The

convergence analysis of all these methods, however, does require that the noise be a

stationary stochastic process.

As opposed to classical approaches to parameter estimation which yield point

estimates of parameters by optimizing some criterion of fit, membership-set parameter

estimation (MSPE) algorithms yield a set of parameter vectors which is compatible with

the model structure, observation record and noise constraints. In general, nc knowledge

of the statistics of the noise process is assumed. However, the noise is assumed to be

constrained in some other way, e.g., with bounded energy [Fogel, 19791 or bounded

magnitude [Fogel, 1982]. Membership-set algorithms are thus preferable when the noise

is too structured as in the case of error occurring when a large order system is modeled

by a lower order model. MSPE algorithms yield 100% confidence intervals for the

parameter estimates at every time instant. In contrast, confidence intervals for least-

squares parameter estimates can be obtained only asymptotically in most cases. Another

important feature of recursive MSPE algorithms is a discerning update strategy whereby

only a fraction of the incoming data points need be used to construct the membership

sets. This not only reduces the total processing time but also enhances the potential for

using these algorithms in multi-channel environments. For every observation which is

processed, recursive MSPE algorithms can also indicate if the observation is consistent

with the model and noise bounds. Thus, the presence of outliers or large modeling

inaccuracy can be detected quite easily, in contrast to other parameter estimation schemes.

In this report, attention will be focussed on the estimation of membership sets of

parameters of linear discrete time difference equation models. In the remainder of this

chapter, an overview of some membership-set a!gorithms will be provided. In Chapter ",

a particular class of membership-set algorithms called optimal bounding ellipsoidal (OBE)

estimation algorithms is studied at some length. The algorithms in this class obtain,
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recursively, ellipsoidal outer bounds of the membership sets of parameters. Though the

membership-sets obtained are often larger than those obtained by using other algorithms,

the bounding ellipsoid algorithms have the advantages of low computational complexity,

analytical tractability, and robustness to parameter variations and finite precision effects.

In Chapter III, a particular bounding ellipsoid algorithm, i.e.. the DIIOBE algorithm of

Dasgupta and Huang [Dasgupta. 19871, is used for the estimation of parameters of

systems with unobservable inputs. The performance of the algorithm is analyzed and

sufficient conditions for satisfactory behavior are derived. In Chapter IV, finite precision

effects in the DEJOBE algorithm are studied. It is shown that the algorithm remains stable

(algorithmic variables remain bounded) in finite word-length environments. Simnulation

results show that the performance of the algorithm is superior to the recursive least-

squares algorithm when the word-length is small. The tracking property of the DHOBE

algorithm is studied in Chapter V. Conditions under which the algorithms can track

variations in parameters are derived. Modifications to the algorithm are suggested which

improve the tracking at the expense of increasing the size of the outer bounding

ellipsoidal approximation to the membership set.

The overview of membership-set parameter estimation algorithms commences with an

enumeration of the different model structures which are commonly employed in

parameter estimation.

1.2 Model Structures

The various types of model structures which are considered in this report are defined

below.

MA model: A moving average model is defined by

y(t) = b0u(t) + blu(t-1) +...+ bm u(t-n) + v(t) (1.2.1)



where v(t) and u(t) denote the system output and input at time instant t, respectively and

v(t) denotes the disturbance at time t.

AR model: An autoregressivc model is defined by the following difference equation

y(t) = aly(t- 1) + a2 y(t-2) +...+ a y(t-n) + v(t) (1.2.2)

where vt) and v(t) are -s defined above.

ARX model: An autoregressive with exogenous input model is defined by

y(t) = ay(t- 1 )+ a2 y(t-2) I..+ a, y(t-n) + b0u(t)+ bILu(t- 1)+..+-bh u(t-ml) A- % t) 1..2.3

where ,It), u(t) and v(t) are defined above.

ARMA niodel An autoregressive moving average model is defined by

y(t) = aly(t-1)+ a2 y(t-2)+..+ an y(t-n) + w(t)-,- cl w(t-1)±..+c r w(t-r) (1.2.4)

where w(t) is a unobservable input or noise sequence and v(t) is the system output.

In the statistical literature, v(t) and w(t) are assumed to be zero mean, white stochastic

processes. However, since the approach used in this report is deterministic, these

restrictions will not be imposed. It will he assumed, instead, that vt) and w(t) are

bounded in magnitude. This assumption is quite realistic in practice. For example,

observation noise which arises due to quantization or round-off error is bounded. as is

the error in measurements due to climatic effects. Similarly, the error due to model

mismatch is often bounded.
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1.3 Membership Sets

Definition: (Memoership set)

Members p set: A membership set is a region in the parameter space which contains all

the parameter vectors consistent with the model structure, observation record anu noise

bounds.

The ARX model which was defined in the last section is a commonly used model

structure, since it can model linear time-invariant systents wvhich have poles a;,d zeros.

The ARX system model can be expiessed as

y(t) = 0*T((t) + v(t) (1.3.1)

with

[a1 , a2 ,..., an, b0, bl, .., bm ]T 1.3.2)

and

(D(t) = [y(t-l), y(t-2), .... y(t-n), u(t), u(t-1), ....u(t-m)! T  (1.3.3)

It is assumed that the noise (v(t)) is constrained in some way. For simplicity, it is

assumed that {v(t)} is bounded in magnitude. Hence there exists a known positive y,

such that

I v(t) 1 y (1.3.4)

Given (y(t), u(t), t = 1, 2, .., T), the goal of membership-set parameter estimation is

to find the smallest set of parameter vectors V(T) in euclidean space RN, where N

n+m+l, which is consistent with all the above equations (1.3. 1) to (1.3.4).

From (1.3.1) and (1.3.4), it follows that

I y(t) - O*TcI(t) 1 y (1.3.5)
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So the set S, enclosed bv the hyperplanes

HI(t) ={ e RN : y(t) - OT(b(t) = +y I and H2(t) = {0 E RN t) - 0Tc(t) = -y}

contains the true parameter. The St can be described as the intersection of two half

spaces. Given the observation record up to time instant T, the smallest possible

membership set will be

V(T)= n S,
i=1

Finding a description of the exact membership set is an arduous task, since it may have

thousands of vertices for even small values of the order N and data record size T. For

example, %k hen N=3. the number of vertices could be as large as T(T- I ,+2 1 Coxcler.

19731. Thus for T=100, the membership set could have almost 10.000 vertices.

Consequently most MSPE algorithms attempt to obtain a region of simpler shape like an

ellipsoid or a box which contains the true membership set W(T). Recently, however, two

exact polytope bounding algorithms have been proposed [Walter, 1987: Mo, 19881,

which recursively yield an exact description of the true membership set. The next section

discusses the exact polytope updating algorithm of Mo and Norton and the exact cone

updating algorithm of Walter and Lahanier.

1.4 Exact Polytope Bounding

Even though ,L- oreti ally, the true membership set may have thousands of vertices

as the numh - ' ira points processed increases, in practice, once the intersection of the

first few half sp:,- , formed, the membership set becomes quite small and so only a

small fractior of the incoming half spaces affect the membership set. Hence the number

of vertices of the mcmbership set increases quite slowly as the number of data points

increases. This provides the motivation for developing algorithms which identify the

precise shape of the membership set.



For the membership set at any instant t, the exact polytope updating algorithm (e.p.u.

algorithm) of [Mo, 1988], stores a list of all the vertices in terms of their components.

For each vertex, a list of all adjacent vertices (the vertex-vertex list), and the hyperplanes

which intersect and form the vertex (the vertex-plane list) are also stored. When a new set

of parameter bounds (the set St) arrives, a test is made to see how St intersects the

existing membership set X(t-1). If the intersection is void, this indicates that either the

model structure or noise bound is incorrect. If St contains -,(t-1), then V'(t) = xV(t-1), and

the parameter bounds provided by St are redundant. If the intersection is not void and if

St does not contain W(t-1), then W(t-1) has to be updated. This involves (i) calculating the

new vertices formed when Hi(t) and/or H2(t) cut xt(t-l), and creating vertex-vertex and

vertex-plane adjacency lists for the newly formed vertices, (ii) updating the vertex-vertex

and vertex-plane lists of the old vertices which belong to y(t-!) ,. St, and (iii) removing

the vertices made redundant by St.

The exact cone updating (e.c.u.) algorithm of Walter and Lahanier is similar in many

ways to the e.p.u. algorithm. It transforms the membership set, which is a convex

polyhedron in RN , into a polyhedral cone in RN+l. Thus the membership set at time t- I

is represented by a cone C 1 . The extreme rays of C,_1 are stored as columns of a matrix

M. When the parameter bounds due to the t'th observation are applied, then as before,

three situations can arise. Either Ct-1 n St = 0, or St D C- 1, or one of the hyperplanes

HI(t) or H2(t) cut Cc. 1. In the latter case, the extreme rays of C, will be those of CI

lying in the set St , and new rays belonging to St n C-1 . Each of these new rays is

obtained as a linear combination of two adjacent extreme rays of C- 1 lying on either side

of the cutting hyperplane. Finally, constraints that become redundant at this stage are

eliminated.

The computational complexity of both these methods is quite large, even for small

order models. The order of complexity at each iteration also grows slowly as new data
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points are processed, since the number of vertices can increase with every new sample.

For these reasons, they are probably not suitable for real time processing applications. It

is claimed in [Mo, 19881, that the e.p.u algorithm is superior to the e.c.u. algorithm in

terms of numerical robustness. Numerical results have only been reported for the e.p.u

algorithm, applied to one ARX parameter estimation problem, and it remains to be seen,

how well the algorithms perform in practice.

1.5 Orthotope Bounding

A popular approach in membership-set parameter estimation is to approximate the

membership set by an orthotope (a rectangular box) which contains the membership set.

This has the added advantage of giving accurate uncertainty intervals for each of the

unknown parameters. A membership-set description in terms of parametric uncertainty

intervals (PUI's) on the individual parameters, is often preferable to a description of an

extremely complicated N-dimensional region. This is particularly true when the

parameters have a direct physical interpretation. It has been shown, [Milanese, 1982],

that the tfgList possible PUI's can be obtained by linear programming. Specifically,

Milanese and Belforte showed that the problem can be reduced to solving 2N linear

programming problems in N variables with 2T constraints, where N is the order of the

model and T is the number of data points. Their algorithm, which is termed the minimum

uncertainty interval correct estimator (MUICE), is not recursive and computationally

intensive. Consequently, it is not suited for real time applications or to the analysis of

nun-stationary data. A simple recursive algorithm which constructs outer bounding

orthotopes has been proposed [Huang, 1980]. However this algorithm does not yield

small enough orthotopes for large order systems. Another recursive algorithm which

constructs outer bounding orthotopes has been proposed recently [Pearson, 19861. The
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PUIs obtained by using the algorithm are not as tight as the PUI's of the MUICE,

although, they arc much easier to evaluate.

It is clear from the discussion above, that both the exact polytope bounding and the

orthotope bounding algorithms involve considerable amounts of computation. In fact, the

computational complexity of the exact polytope bounding algorithms depends heavily on

the characteristics of the data. Thus these algorithms are not suited for real time

applications. In the next chapter, several ellipsoidal bounding algorithms will be

discussed, all of which have the advantageous features of low computational complexity

and analytical tractability. The latter feature has simplified the application of the

algorithms to different cases such as ARMA parameter estimation and output error

parameter estimation, and, has enabled its implementation via lattice filters and systolic

arrays. All this and much more coming up, so don't go away!



CHAPTER 1I

BOUNDING ELLIPSOIDAL PARAMETER ESTIMATION

2.1 Introduction

The optimal bounding ellipsoid algorithms outer bound the membership set of

parameters by ellipsoids in the parameter space. The idea of using ellipsoids to bound

sets was originally proposed by Schweppe (Schweppe, 1967], in the context of state

estimation. He formulated a recursive algorithm for completely specified dynamic

systeins, with unknown but bounded inputs and bounded observation errors. At every

instant, the algorithm yields ellipsoidal sets, which contain the true time varying system

state. The state estimate can be taken to be the center of the ellipsoid. The algorithm

differs from the Kalman filter, developed for linear dynamical systems with gaussian

inputs and noise, only in the gain sequence. Following Schweppe, Fogel proposed a

recursive algorithm for calculating ellipsoidal outer bounds of the membership sets of

parameters, assuming energy constraints on the noise (Fogel, 19791. By imposing

instantaneous bounds on the noise, Fogel and Huang [Fogel, 19821 came up with

membership-set algorithms, wherein, the size of the bounding ellipsoids is optimized

according to different criteria. A by-product of the optimization procedure is a discerning

update strategy which makes efficient use of data (Fogel, 19821. Based on their work,

different bounding ellipsoidal algorithms ha-,e been proposed in the past few years. In

this chapter, the optimal bounding ellipsoid (OBE) algorithms of (Fogel, 19821 are

presented first. Then in Section 2.3, a more recent OBE algorithm, the DHOBE algorithm

[Dasgupta, 1987], which uses a slightly different ellipsoidal formulation and optimization

criterion, is discussed at some length. An analogy between weighted least-squares and

I1
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the OBE algorithms is drawn in Section 2.4. Some simulated situations in which the

performance of the OBE algorithms is seen to be markedly superior to the recursive least-

squares algorithm are presented in Section 2.5. Finally, in Section 2.6, an improvement

to the OBE algorithms of Fogel and Huang [Belforte. 19851 is discussed and the

improved algorithm is compared with the other OBE algorithms via simulations.

2.2 The OBE Algorithms

As mentioned earlier, the OBE algorithms of Fogel and Huang [Fogel, 1982],

recursively obtain ellipsoidal outer bounds to the membership set. The model structure

considered is the ARX model of (1.3.1)

y(t) = 0*To(t) + v(t) (2.2.1)

where 0* , the true parameter vector, and, 1D(t), the regressor vector, are N dimensional

vectors given by (1.3.2) and (1.3.3) respectively. The noise v(t) is assumed to be

uniformly bounded in magnitude

I v(t) I <5 (2.2.2)

In order to develop a recursive formulation for the bounding ellipsoids, it is assumed that

at time instant t-1, the true membership set is outer bounded by the ellipsoid Et-I

described by

Et- = {0 E RN : [0- 0(t-l) ]T p-l(t-l) [0- 0(t-l)] < 11 (2.2.3)

where P-I(t-1) is a positive definite matrix, and 0(t-1) is the center of the ellipsoid. At

time instant t, observation y(t), defines a set St , which is a degenerate ellipsoid in the

parameter space

St = (0 r RN: [y(t) - OT4(t)12 < y 2 } (2.2.4)
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From (2.2. 1 and (2.2.2) it is clear that St contains the true parameter vector. An ellipsoid

Ej which contains the intersection of Et- and St is then given by

Et 0 e RN : [6 - 0(t-1I) IT p-*I't-1) [0O(t- 1)j + Xt (y(t) - 0)Tq(t)12

1 + Xty 2 ) (2.2.5)

where kt is a positive time varying updating gain which is chosen to minimize the size of

the ellipsoid Et. By performing some tedious, but straightforward algebraic manipulation.

it can be shown that Et can be expressed in the form

Et {0 r RN: [0-0(t) IT p-I(t) [0 -0(t)J :! 1 (2.2.6)

where

P- I(t) a 2 (t) Q- I(t) (2.2.8)

C2 (t) 1+ ?,ty 2 - X [y(t) -(4T(t)O(t-l)I 2 (2.2.9)
1 + Xt (T(t)p(t- 14(T(t)

0(t) = 0(t- 1) + kt Q(t)(D(t)[y(t)-(DT(t)(t- 1)1 (2.2.10)

The matrix inversion required in (2.2.10) can be circumvented by using the matrix

inversion lemma in (2.2.7), which yields

Q(t) = P(t- 1) - k, P(t- I )cI(t)(DT(t)p(t- 1) (..1

1 + Xt cIT(t)p(t-1)IDT(t) (..1

In order to ensure that the initial ellipsoid E0 contains 0*, E0 is taken to be a large ball

centered around zero, i.e. P(0) = M.1, where M is a large number and I s the N by N

identity matrix, and 0(0) = 0. If an initial estimate of O*is available, then 0(0) could be

set to that value.
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In the minimal volume sequential (MVS) algorithm, at every time instant t, the

determinant of P(t), which is proportional to the volume of the enclosing ellipsoid Et, is

minimized with respect to kt. This yields the following formula for the gain factor

If 2N [y 2 8 62(t) ] G(t) 0, then /t = 0 (2 .2.12a)

with 6(t) = y(t)-4T(t)0(t - 1)

otherwise

=" -c2 + " '2 - 4ct ct3  (2.2.12b)

where

O= (2N -1) y2 G2(t) (2.2.12c)

a2 = G(t) [(4N-1)y 2 - G(t) + 6 2(t)] (2.2.12d)

X3 = 2N[y 2 - 2 (t)] - G(t) (2.2. 12e)

and G(t) = cD(t)(t- 1)(T(t)) (2.2.12f)

Note that when -t = 0, Et = Et-1, i.e. 0(t) = 6(t-l) and P(t) = P(t-1). The evaluation of

k, is thus the basis of a discerning update strategy, whereby, the "innovativeness "of the

observation pair (y(t), (D(t)} is checked in (2.2.12a). An update ( #. 0) occurs only if it

is possible to construct an ellipsoid Et, which bounds the intersection of Et- I and St, and

whose volume is less than Et-I .

The computational complexity of the ellipsoid updating formula (2.2.8)-(2.2.11) is

O(N 2 ), which is same order of computational complexity as that of the RLS algorithm.

For the discerning update strategy, the major contributor to the computational cost is the

computation of G(t) = 4T(t)P(t-1)DT(t), which takes (N2 + N) multiplications and

(N+1)(N-1) additions.
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Instead of choosing Xt to minimize the volume, it can be chosen to minimize the sum

of the semi-axes of the bounding ellipsoid Et. This is achieved by minimizing the trace of

the matrix P(t). The resulting minimum trace sequential (NITS) algorithm has a different

update strategy. In case of an update. in order to find the optimum updating gain factor,

the positive root of a certain third order polynomial has to be found [Fogel, 19821. The

MTS algorithm, therefore, has a higher computational cost than the MVS algorithm.

2.3 The DHOBE Algorithm

The updating gain factors of the MVS and MTS algorithms of the above :iction are

chosen to minimize the size of the bounding ellipsoid. This is no doubt desirable, when

the parameters of the unknown system are fixed. However, if in case, the true parameter

changes after the the ellipsoid has shrunk, it is possible that the resulting bounding

ellipsoid, if it exists, will no longer contain the true parameter and hence it will not be

possible to track the true parameter. Thus from the point of view of tracking time varying

parameters, it may not always be advantageous to minimize the size of the bounding

ellipsoids.

The motivation for the development of the DHOBE algorithm, stems more from the

point of view of adaptive filtering and prediction error minimization, rather than from

membership-set parameter estimation. This accounts for the similarity between the

DHOBE algorithm and some bounded error algorithms proposed in the adaptive control

literature [Fortescue, 1981; Ortega, 1987]. The quantity which is minimized in the

DHOBE algorithm is a certain upper bound on the normalized parameter estimation error.

This yields an updating rule which has a computational complexity of only (N+l)

multiplies. Furthermore, minimizing with the above criterion greatly enhances the

analytical tractability of the algorithm. Analysis shows that the a priori prediction error is
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asymptotically bounded by the bound on the noise. Additionally, a degree of

uncorrelatedness between the inputs and the noise is sufficient for asymptotic cessation of

updates in the fixed parameter case. The updating gain factor in the algorithm also plays

the dual role of a forgetting factor. This improves the tracking capability of the algorithm

vis a vis any of the MSPE algorithms. On the flip side, since the size of the bounding

ellipsoids is no longer the criterion for optimization, the DHOBE algorithm, in general.

yields bounding ellipsoids which are larger than those yielded by other OBE algorithms.

The above remarks will become clearer after the following discussion.

The sequence of optimal bounding ellipsoids in the DHOBE algorithm is developed

as follows. Let the bounding ellipsoid at time instant t-1 be

Et-I = (0e RN: [0-0(t-l) IT p-(t-l) [0- (t-l)] <: 2 (t-1) } (2.3.1)

where, as in the previous section, P-I(t-1) is a positive definite matrix, and 0(t-l) is the

center of the ellipsoid. The factor 2(t-l) is a positive time varying scalar, which along

with P-l(t-1) determines the size of Et-1. Since the true parameter 6* e Et-1, c72(t-l) can

also be thought of as being an upper bound on the normalized parameter estimation error

V(t-l) = [6* - 6(t-l) ]T p-'(t-l) [6* _ 6(t-l)J

An ellipsoid Et which bounds the intersection of Et-I and the set St , where St is

described by (2.2.4), is then given by

Et= 10 e RN : (1-Xt)[ - 0(t-l) T p-l(t-l) [6- _(t-1)] +X [y(t) - YOT((t)j2

< (1-Xt) a 2 (t-1) + X y 2 } (2.3.2)

Comparing (2.2.5) and (2.3.2), it can be seen that in (2.3.2), ,t is an updating gain

factor and (1- Xt ) is a forgetting factor. By performing some algebraic manipulations, an

expression for Et can be obtained as
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Et = {0 e RN :10- 6(t) ]T p-I(t) [0- 0(t)] < G2(t) } (2.3.3)

where

P-I(t) = (1- X t)P-I(t-1) + kt O(t)lT(t) (2.3.4)

y2(t) = (1-Xt) G2(t-1)+ X t y 2  kt (1-Xt) [y(t)-oT(t)0(t-1)12 (2.3.5
1-kt+ t IT(t)P(t- )DT(t)

0(t) = 0(t- 1) + A.t P(t) v(t)( T(t)O0(t 1)] (2.3.6)

Using the matrix inversion lemma in (2.3.4) yields

PP1 _I ?(t- 1 )c(t)oT(t)P(t - 1) (2.3.7)
1 = t 1- t + ktDT(t)P(t 1)ctT(t)

The initial conditions are chosen to ensure that 0* E E0 . A possible choice is

P(O) = I, and y2(O) = 1/c2 where c << 1.

The updating gain X, is chosen to minimize Cy2 (t) at every instant t. The minimization

procedure yields the following updating criterion

If Cy2(t-1) + 62 (t) < y 2 then ?t = 0 (No update) (2.3.8)

where the a priori prediction error

5(t) = y(t)-JT(t)0(t- 1) (2.3.9)

Otherwise if ay2(t- 1) + 82(t) > y 2, then the optimum value of X, is non-zero and

calculated according to

Xt min(ax,vt) (2.3.10)

where
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(t) if 62(t =f() (2.3.11)
1 4 (t) 

G t
SifG(t) = 1 (2.3.12)

= 1 ( if 1±3(t)[G(t)-I I > () (2.3.13)1-G~) " 1 +1(t)[G(t)- 1 ]

ct if l+ (t)[G(t)-11 <0 (2.3.14)

where ct is a user chosen upper bound on t satisfving

0<cf< 1 2.3.15)

and

G(t) = (T(t)p(t- 1 () (2.3.16)

and
,2_2 2(t- 1)

53(t) = (2.3.17)3i2(t)

The main results of the convergence analysis of the DHOBE alg-orithm Dasgupta.

19871 are

(i) {o 2 (t)) is a non-increasing sequence and

lim T2 (t) = (2, where 0 < o7 <_y2

(ii) The eigenvalues of P(t) are upper and lower bounded provided the inputs are

sufficiently rich in frequency and sufficiently uncorrelated with the noise, i.e. if there

exist 31432 > 0, such that for some M and all t

t+M
3 I I IW(t)WT(t) <1321 (2.3.18)

i=t+n

where
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\V(t = Ut(t), utt-1l),....utt-n-m ), vlt), vtt-lI)..,vct-nM - ,

with n being the order of the AR part. and ni being the order of the exogenous part:

then there exist cx.1. ot > 0. such that for all t

oX I < P(r)< c, I

iii) If G(t) is bounded, i.e if the conditions of (2.3.! S) hold then.

(a) The a nrion prediction errors are bounded

62(t -t [0. 1-

hb The parameter estimate difference converges to zero. i.e.

I I 0(t) - Oft- 1) II --- 0

iv) If the conditions of (2.3.18) hold and 0* is constant, then

lim ) -- 0

A detailed derivation of these convergence results and the performance of the algorithm i:,

,.omp~uter simulations can be found in [Dasgupta. 19871.

Looking at the update equatio., of the OBE algorithms, it is clear that the algorithms

are similar to the weighted recursive least-squares (WRLS) algorithm. The next section

shows that the OBE alzorithms are in fact special cases of the V,.'RLS algorithm.

2.4 Weighted Least-Squares and the OBE Algorithms

The conventional weighted least squares algorithm ILjung, 19831 minimizes the

criterion
T

VT (0) L [y(i) - OT(i)2 (2.4.1)
T 1
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The need for weighting the observations can arise if. for example, the noise variances are

time varying and in that case. cxt can be taken to be inversely proportional to the variance

of the noise. In fact, this choice of oxt is optimal when the noise is uncorrelated and
gaussian. i.e.. the resulting parameter estimates have the minimum covariance over -11

possible choices of the forgetting factor. If in addition, it is required to discount older

values, then the followingz criterion can be used

T
V'T tO) = + P(T.i)[y(i) - oT(i)i2 (2.4.2)

i= L

where

[3(Tki) = )(T)P3(T-1,i), 1 1 T-1 (2.4.3)

which can also be written as

T

3(T,i) = [ J7J(j)Jox , with [(i,i) = oi (2.4.4)
j=i+l

The value of 6 which minimizesV'T (0), can easily be computed

O(T) = FT (2.4.5)

A recursive form for O(t), can be easily developed by usig (2.4.3) and (2.4.5)

O(t) = 0(t- 1) + ct P(t)Z(t)[y(t)-(T(t)0(t - 1)1 (2.4.6)

where

P-I(t) = X(t) P- (t- 1) + 0tq (t)T(t) 2.4.7)

Thus the pa:ameter vector O(t) described by (2.4.6) and (2.4.7) minimizes V't(O).

Comparing (2.4.6) and (2.4.7) with (2.3.4) and (2.3.6) of the DHOBE algorithm, it is

apparent that X, in (2.3.6) plays the same role as cxt in (2.4.6) and (2.4.7). Also 1- -t )
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in (23..4) is equivalent to ,it) in (2.4.7). Thus the DHOBE algorithm minimizes the

criterion

IF_ q.TY ) _ 0 ((iW (2.4.8)VoBE (0) = .TIY0

where
T

qi,T = f J(1--j)] ki , and qij = -i (2.4.9)
j=i+l

Thus the DHOBE algorithm can be described as a weighted recursive least-squares with

forgetting factor algorithm, with the weight o.t and forgetting factor k.t) given by

kt),= l-X., and att

Alternatively, the DHOBE algorithm can be described as a weighted recursive least-

squares algorithm with non-causal weights

(Xt = qt,T

For the MVS or MTS OBE algorithms, it is easy to show that the corresponding relations

are

-- -= and cxt= k

S (Y2(t) (y2(t)

Thus these algorithms are also special cases of the WRLS with forgetting factor

algorithm.

One implication of such a relation between the OBE algorithms and the WRLS

algorithms is that it facilitates application of many of the ideas and concepts from the

least-squares adaptive filtering literature. For example, it opens up the possibility of

developing exact lattice and fast transversal filter implementations of the OBE algorithms.

In fact, this equivalence has already been exploited to develop a systolic array

implementation of the MVS algorithm [Deller, 1989].



Another implication is that, even though the formulation of the OBE algorithms is

motivated by membership-set-theoretic considerations, it turns out that the parameter

estimates (the centers of the ellipsoids) minimize the average weighted prediction error. In

the MTS and MVS algorithms, the choice of the weighting sequence is motivated by a

desire to reduce the size of the bounding ellipsoids. In the DHOBE algorithm, the

weighting factor is chosen to minimize an instantaneous upper bound on the normalized

parameter estimation error. Due to the different choices of the weighting and forgetting

factor sequences, the parameter estimate trajectories of the different OBE algorithms and

the popular exponentially weighted least-squares (EWLS) algorithm (with X.(t)=. < 1.

and (xt = 1) may differ significantly. To illustrate this point, some simulated examples in

which, the parameter estimation error of the OBE algorithms is markedly lower than that

of the RLS and the EWLS algorithms are presented next.

2.5 Performance in Sinusoidal and Impulsive Noise

In many situations, the noise process affecting the observations may not be a white

noise process, or may not even be stationary. For example, the noise may have a large

sinusoidal component, as in the case of observations affected by electromagnetic

interference, and in the case of helicopter flight data [Goodwin, 19871. In some cases,

the noise may be bursty or impulsive, and thus highly non-stationary. It is interesting to

compare the performance of the OBE algorithms to RLS algorithm in these situations.

The first two examples compare the performance of the DHOBE and MVS algorithms to

the RLS algorithm when the noise is an additive sum of white noise and a sinusoid.

Example 2.1

The unknown system is described by an ARX(2,2) model

y(t) =-0.4 y(t- 1) -0.85y(t- 2 ) -0.2 u(t) -0.7u(t-1) + v(t)



The input u(t) is generated by a pseudo-random number generator which is uniformly

distributed in I-I,+ I. The noise process is generated by

v(t) = A sin (coot) + (1- A )w(t) (2.5.1)

where A, the amplitude of the sinusoid, satisfies 0 _ A < 1, and w(t) is white and

uniformly distributed in [-1,+1]. The frequency wo=7t/10. The amplitude of the sinusoid

is varied from 0 to I and for each value of A, ten Monte Carlo runs, with 500 points

each. of the RLS and OBE algorithms are performed. The estimation error is measured

bv calculating the final mean-squared parameter estimation error (MSPEE) defined by

= 10log 1110i (500)- (* (2.5.2)ILN i=1 I

Figure 2.1 displays the variation in MSPEE for the RLS and OBE algorithms as A is

varied. The mean-square error in the RLS estimates increases drastically as the amplitude

of the sinusoidal disturbance increases. This is because the RLS estimates are biased

when the noise is correlated [Ljung, 1983]. The estimates of the OBE algorithms appear

insensitive to the amplitude of the sinusoid. Unfortunately, one cannot derive any general

conclusions about the superiority of the OBE algorithms in the presence of sinusoidal

disturbances, since such behavior may be specific to the particular ARX(2.2) system

considered.
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10 runs

0 500 data points

DHOBE:
a (0)= 100, (x = 0.5

MVS: P(0) = 1001

RLS: P(0) = 10001

-0- DHOBE

-*- RLS

-U- MVS

-30 - , . , , , J

0.0 0.2 0.4 0.6 0.8 i.0 1.2

Figure 2.1 Mean-squared parameter estimation error for the OBE and

RLS algorithms applied to an ARX(2,2) model with a

sinusoidal disturbance

Example 2.2

In order to make some definitive statements about the bias, the behavior of both the

algorithms is investigated ior a simple ARX(1,1) model.

y(t) = x y(t-1) + b0 u(t) + v(t) (2.5.3)

The noise v(t) and the input u(t) is as in Example 2.1. The absolute value of x is required

to be less than unity to ensure stability of the system. An expression for the bias in the

RLS parameter estimates for this simple model is derived in Appendix 2A. It is shown

that if [ab IT are the values of the parameter estimates that the RLS algorithm yields

asymptotically, i.e. these values minimize the mean-squared prediction error, then for the

system (2.5.3)
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A 2
[coswOO - X]a=x+ A2 _ (2+(1- A)2 , 2 ) l-2xcosco0 +x21

2 L

and

b = b0  (2.5.4)

where ow 2 and au2 are the variances of the white noise w(t) and input u(t) respectively.

Thus only the AR estimate is biased and the bias depends on the noise and input

variances, the amplitude and frequency of the sinusoid, and the true AR coefficient. In

particular, the bias is zero when A = 0, and the sign of the bias is the same as the sign of

(cosao -x ). Unfortunately, a corresponding expression for the bias in the OBE

estimates is difficult to derive on account of the presence of the data dependent updating

and forgetting factor. In order to get some comparison of the bias possible in the two

algorithms, the value of A is now fixed at 1, i.e. the disturbance is a pure sinusoid with

w = rt/10, and x, the system AR coefficient is varied from +1 to -1. The value of b0 is

set equal to unity, and the input u(t) is generated as in Example 2.1. The asymptotic bias

is computed by averaging over 10 Monte Carlo runs of 500 points each. Figure 2.2 and

Figure 2.3 show the variation in the bias in the parameter estimates as x is varied. It is

clear that the OBE estimates are biased for many values of x. However, the bias in the

AR estimate is significantly lower than the bias in the RLS autoregressive estimate. The

values of the bias in the RLS algorithm, yielded by simulation are very close to the values

predicted by (2.5.4), thus verifying the analysis of Appendex 2A. Unlike the RLS case,

the MA estimates yielded by the DHOBE algorithm seem to be slightly biased.



26

10e+O 10 runs, 500 data points

-0- DHOBE.- 0 2e + O  RS
10- -0- RLS

-- ThCorcucal

-0- MVS

10 -3e+0

10 -4e+0 I I I

-1.0 -0.6 -0.2 0.2 0.6 1.0
X

Figure 2.2 Variation in the bias of the RLS and OBE AR parameter estimates

as the AR coefficient is varied for an ARX(l,1) system model

0.08 10 runs. 500 data points

0.06

0.04 -0- DHOBE
"-0 RLS

0.02 -I- Theoretical
- - MVS

0.00

-0.02 * * I . I . I * I
-1.0 -0.6 -0.2 0.2 0.6 1.0

x

Figure 2.3 Variation in the bias of the RLS and OBE MA parameter estimates

The average final values of [a 2 (t)]2 det [P(t)], which is a measure of the final

volume, and [a 2(t)] Tr [P(t)], which is measure of the sum of the semi axes, for the

DHOBE algorithm, are plotted against x in Figure 2.4. Also plotted are the corresponding
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values for the MVS algorithm. It appears that the ellipsoids are large at the values of x at

which the bias is significant.

4

3

-0- Vol. (DHOBE)

4 Tr. (DHOBE)
I-t- Vol. (MVS)

• Tr. (MVS)

0
-1.0 -0.6 -0.2 0.2 0.6 1.0

x

Figure 2.4 Average final volume and sum of the

semi-axes for Example 2.2

Example 2.3

In this example the performance of the OBE and RLS algorithms is compared when

the observations are affected by bursts of equal amplitude disturbances. The system

model considered is the same ARX(2,2) model of Example 2.1.

y(t) = -0.4 y(t-1) -0.85y(t-2) -0.2 u(t) -0.7u(t-l) + v(t)

The noise process (v(t)} is now generated as follows. At every instant t, t=1,2,..,1000,

a random number w(t) E [0,1] is generated. If w(t) is greater than l-prob (where prob is

the preassigned probability of a burst occurring), then v(t+j), j = 0,1,..4, is set equal to
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unity. Thus the noise sequence is composed of bursts of impulses of burst length > 5.

The average parameter estimation error MSPEE, was computed over 10 runs of 1000

points each for the RLS (forgetting factor ,=1, P(0) = 10001), EWLS (P(O) = 10001, X

= 0.99 and k = 0.9), the DHOBE (with x = 0.5, P(0) =1. and Cy2(0) = 100) and the MVS

(P(0)= 1001) algorithms. Table 2.1, lists the MSPEE values in dBs for two different

values of prob. The quantity in parentheses in the first column is the average number of

impulsive noise points in the 1000 point data records. The quantities in parentheses in the

last two columns are the average final volumes and final sums of semi-axes, respectively,

for the DHOBE and MVS algorithms. The performance of both the DHOBE and the

MVS algorithm is vastly superior to that of the RLS and EWLS algorithms when the

number of bursts is large. However, as prob decreases, the performance of the RLS

algorithm, becomes comparable, and of course, for very small values of prob, the

parameter estimation error of the RLS algorithm would be lower than that of the OBE

algorithms. it is surprising to see that, in both the cases, the DHOBE algorithm yields

ellipsoids of smaller volumes than the MVS algorithm. Since the construction of the

bounding ellipsoid Et from Et-I is different for the MVS and DHOBE algorithms (c.f

(2.2.5) and (2.3.2) ), the DHOBE algorithm,can in principle, yield ellipsoids with

smaller volumes than the minimum volume sequential algorithm.
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TABLE 2.1

prob RLS EWLS DHOBE MVS

X=0.99 X.=0.9

0.05 -14.9 -14.05 -7.89 -26.9 -28.83

(239) (4x10- 5, 0.35) (1.6x 10- 4. 0.52)

0.02 -20.37 -18.14 -8.6 -22.67 -21.59

(105) (8xlo -4 , 0.73) (3.6x10-3, 1.16)

Discussion of Simulation Results

In the presence of sinusoidal disturbances, the unweighted RLS algorithm yields

biased estimates. The estimates of the OBE algorithms are also biased, however, the bias

is less than the bias in the unweighted RLS algorithm. The bias in the OBE parameter

estimates appears to go hand in hand with an increase in the volume of the bounding

ellipsoids. In the impulsive noise case, the mean-square error in the OBE estimates is

observed to increase as the number of impulses decrease. This behavior is contradictory

to the behavior of the RLS estimates and deserves further investigation.
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2.6 A Modification to the MVS Algorithm

It has been observed that the MVS algorithm does not always yield a bounding

ellipsoid with minimum volume (the minimum over all ellipsoids formulated according to

(2.2.5) ). Such a situation can occur when either, (i) one of the hyperplanes- Hi(t) or

H2(t), which define St, does not intersect the bounding ellipsoid Et-1 ; or (ii) both HI(t)

or H2(t) do not intersect Et-1. In the latter case, the smallest possible Et is Et-i itself. In

the former case, the non-intersecting hyperplane, can be replaced by a parallel

hyperplane tangent to Et-1. Then, by appropriately redefining the set S1, a minimum

volume ellipsoid, which bounds the intersection of Et-I and the new SL can be found.

which will have a smaller volume than the ellipsoid obtained by the conventional MVS

algorithm. This is the essence of the modification proposed by Belforte and Bona

[Belforte. 1985]. The modified algorithm is developed as follows.

The equations defining HI(t) and H2(t) are

HI(t) = { E RN: OT(I(t) = y(t) - }

and

H2(t)= j{0 RN: OT(t) =y(t)+,}

HI(t) is the lower hyperplane and H2 (t) is the upper one. Assume that Hl(t) does not

intersect Et. 1. Then the equation of Hl'(t) parallel to H1 (t) and tangential to Et-1 is

Hl'(t) = (0,E RN : 0To(t) = z1

zj can be found as follows. Assume that Hl'(t) intersects Et-1 at 00. Since Hl'(t) is

orthogonal to the gradient vector ,,! 00, for any 0 E H1'(t)

1(0 -_ (t- I))T P-1(t- l)(0- 0(t- 1))]} T  (0-00) = 2(00 - 0(t- 1))T P-1(t - 1)(0- 00)

=0
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Since Hl1 (t) is also orthogonal to cDt) and 0-00 lies in Hl'(t)

for some 11, and since 00 is on the bounciy7 of Et-1,

(00 _ Ot _ 1)T-(t _ 1)(00 _ O(t _-1)) = T,2(T(t)p(t _ l)cI'(t) = 1

Hence the projection of 00 - O(t- 1) onto WDt) is of length

j(DT(t)O(t) (T ()Dt (T()D

(DT' (tA(D(t

where, as before,G(t) = (DT(t)p(t- 1 )'D(t). But, since the equation of a hyperplane parallel

to H1 '(t) and passing through O(t-l1) is OTD(t) = OT(t 14(t), therefore

Thus

z T(t- 1)rD(t) - JGt

It can be shown similarly that the equation of a hyperplane parallel to H27(t) and tangent to

Et-i is

H2 (t) = ({ 6E RN : OT4D(t) =z2= OT(t- 1 )D(t) + -GJ(t)

The modified algorithm thus consists of the folowing steps
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(i) Evaluate z - OT(t - 1)((t)- N , and z-) = 0T6t- )14(t) + ", G(t)

(ii) If z1 > vyt) + y, or z2 < v(t) -y, then the intersection of SL and Et-1 is void and

hence either the model or the noise bound is incorrect.

(iii) If zj > y(t) - y, and z2 < y(t) + y, then both H1(t) and H2(t) do not intersect Et-1,

and hence Et = Et-1, is the bounding ellipsoid with minimum volume.

(iv) If zI < (t) - y, and z2 > y(t) + y, then both HI(t) and H2(t) intersect Et-.I and

hence EL is constructed as in the MVS algorithm.

(v) If zj > yt) - y, and z2 > y(t) + y, then only hLt) does not intersect Et-1. Hence

replace HI(t) by Hl'(t), and construct the bounding ellipsoid Et.

(vi) If z I < 'yt) - y. and z2 < y(t) + y, then only H2(t) does not intersect Ej-1. Hence

replace H2(t) by H2'(t), and construct the bounding ellipsoid Et.

If step (v) or (vi), the bounding ellipsoid is constructed as follows:

Define

I = max [Zl, y(t) - '( ; f 2 = min (z2 , y(t) + y ]

and

y'(t) =f-I+; y= 2

Then, it is easy to see that in step (v) or (vi), the new set St' is defined by

St' = (0 E R N : [y'(t) - OT(D(t)12 < y'2

The ellipsoid which bounds the intersection of Et-1 and SL' can now be constructed

exactly as in the MVS algorithm. The update equations and the equations for the

optimum updating gain are exactly as in Section 2.2, except that y(t) is replaced by y(t)

and y is replaced by "'.
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The modified MVS algorithm is applied to the ARX(2,2) system of Example 2.1 of

the previous section. The noise sequence is white and uniformly distributed in [-1,+1].

Five Monte Carlo runs (each of 1000 data points ) of the MVS and modified MVS

algorithm are performed The average final volume of the bounding ellipsoid is 1.4x 10-4 ,

for the modified MVS algorithm and 4x10-2 , for the MVS algorithm. The average final

sum of semi-axes is 0.64 and 2.58 respectively. Thus the modification can cause a

significant reduction in the size of the bounding ellipsoids.

An attempt was made to modify the DHOBE algorithm in the same manner. The

resulting tests in the modified algorithm are as above with the only difference being that

instead of using G(t) = cDT(t) P(t- 1) 0(t) to construct zi and z2 , the quantity

G'(t) = G2(t-l)T(t)P(t-l)D(t) is used. When simulated, however, the modified DHOBE

algorithm did not update frequently enough. This is because if Y' is small for some time

instant t, then G2(t) tends to decrease by a large amount. Then for future time instants k.

when both HI(t) and H2(t) intersect E t-I , a 2(k-1) is much smaller than y2 and hence the

sum &2(k-1) + 62(k) is much smaller than y2 , thereby not permitting an update. Thus the

modification of Belforte and Bona does not appear to be applicable to the DHOBE

algorithm.



CHAPTER HI

ARMA PARAMETER ESTIMATION

3.1 Introduction

In many are-is of signai processing,. only samples of a signal ,t) are available, and i1

is required to obtain a model which can describe the signal as accurately as possible. For

example. in speech processing, only samples of speech are available. since it is not

possible to measure the glottal excitation. In seismic data processing. often only the

response of the seismic layers to an excitation is measurable. while the actual proting

input is unknown. In radar and array signal processing, high resolution spectral

estimanon is often performed by first fitting a model to the received signal.

A powerful and increasingly popular wa' to model the signal of interest, is to

assume that it is the output of an IIR filter driven by unknown white noise ,w't)

[Friedlander. 1982]. The signal y(t) is thus modeled as an autoregressive moving

average( ARMA process of the form

vft) = a, y(t-1 )+..+ a, y(t-n + w(t) + c1 w(t-1 ) +..+ c w(t-r) (3.1.1

Fitting this ARNIA model to the measured data y(t). t =1,2... . requires the estimation of

the parameters a ... ,. a. C... c.

Even in cases when the input is known, as in control applications. the need for

ARMA. or more accurately ARMAX parameter estimation arises. For example a DARN'L:\

34
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model with input and output measurement noise is equivalent to an ARMAX model. This

can be shown as follows. The DARMA process [Goodwin, 19841 can be expressed in

the form

A(q-1 ) y(t) = B(q') u(t) (3.1.2)
where A(q-1) = - a, q-1 -aq-2 - aq-n B(q-=b 0 + b, q-1 -,bq- -m.

and q-1 is the delay operator. The input {u(t)) is assumed to be measurable. If the inputs

and outputs are subject to white measurement noise, then the observed outputs ym(t) and

observed inputs Um(t) are iven by

ym(t) = v(t) + p(t) (3.1.3a

U(t)=U=t)+S(t) 3.b

where p(t) and s(t) are assumed to be zero mean. uncorrelated white noise processes with

variances (Y.- and ojs respectively. Substituting (3.1.3) in (3. 1.2) gives

A(q-1 ) Ym (t) = B(q -1) um (t) + A(q -1) p(t) - B(q-1) s(t) (3.1.4)

By the spectral factorization theorem [Astrom, 19861, the noise terms in (3.1.4) can be

replaced by a unique spectrally equivalent minimum phase process. so that (3.1.4)

becomes an ARMAX process

A(q-1yr (t) = B(q-) urn (t) + D(q-Q w(t) 3.1.5

where

.2 D( ziD( z- CY +2 A( z)A( z-1) - GS2 B( z)B( z-1 ) (3. 1.6)

The DARMA process with input and output measurement noise is thus a special case of

an ARMAX process.

Many methods for the estimation of ARMA parameters have been proposed in the

literature. particularly from the spectral estimation viewpoint. Among the more recent are

Cadzow's overdetermined rational equation method [Cadzow, 19821, the spectral

matching technique of Friedlander and Porat [Friedlander. 19841, and the extended

Yule-Walker method of Kaveh [Kaveh, 1979]. A common feature of these methods is the
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use of the sample autocorrelation sequence of the output process y(t). In the context of

system identification, the extended least-squares (ELS). the recursive maximum

likelihood (RML) and multi-stage least-squares algorithms have been used to recursively

estimate ARMA parameters [Ljung, 1983, Mayne, 1982]. The ELS algorithm uses the t7

posteriori prediction error c(t), as an estimate of w(t). The regressor vector is formed

from ylt-1).... y(t-n) and E(t-1),... E(t-r). The standard RLS algorithm is then employed

to update the estimates. The algorithm is conceptually simple but restrictive in the sense

that convergence of the algorithm can be assured only if the underlying transfer function

Hlq-i) = 1/ C(q - 1/2 is strictly positive real (SPR). with q-I being the delay operator

and

C(q - '= 1 + cq - 1 + cq-2 +..+Crq-r (3.1.7

The transfer function H(q-1, is SPR if there exists an c such that

Re[H(e°O)] >_ c > 0, for all (o E [-t,t]

The RM%L algorithm, which uses a filtered version of the regressor vector used in the

ELS algorithm. does not require H(q-1 ) to be SPR. However the estimates have to be

monitored and projected into a stability region to ensure convergence[Ljung. 19831.

In this chapter. the DHOBE alorithm is extended to the ARMA case. For the ARNLA

parameter estimation problem. since the input sequence {w(t)) is unobservable, the

DHOBE algorithm cannot be applied in its present form. However, by assuming that the

input white noise is bounded in magnitude, the DHOBE algorithm can be extended in a

manner similar to the ELS algorithm. The simpler optimization criterion of the DHOBE

algorithm makes the convergence analysis of the extended algorithm tractable. The

analysis is performed by imposing a bound on the sum of the magnitudes of the MA

coefficients. This is sufficient to ensure that the true parameter vector is contained in all

the ontumal bounding ellipsoids. The algorithm thus gives 100% confidence regions for

the parameters at every instant. The ELS or RML algorithms. in contrast can yield
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confidence regions only asymptotically. A uniform bound on the a posteriori prediction

error of the extended DHOBE algorithm is derived. In contrast, even though the a

posteriori prediction errors are generated in a stable fashion in the ELS algorithm[Ljung,

1983]. it is difficult to obtain an expression for even the asymptotic bound. if such a

bound exists. By imposing a persistence of excitation condition on the regressor vector,

the a priori prediction error of the extended DHOBE algorithm is shown to be bounded

and the parameter estimates are shown to converge to a neighborhood of the true

parameter vector. Simulations show that the performance of the algorithm is comparable

to the ELS algorithm as far as the mean-squared parameter estimation error (MSPEE) is

concerned. It has also been observed , in a number of examples. that the transieni

performance of the extended algorithm is superior to the ELS algorithm.

3.2 Extension to ARMA Parameter Estimation

The ARMA model described by (3.1.1), can be rewritten as

W(t) = y(t) - 0*T 1'(t) (3.2.1

where 0*. the vector of true parameters, and CI'(t) are defined by

0* = [a1,  a- ... an , C, , c, .... c, ]T

(D'(t) =[y(t-1) ,.,y(t-n), w(t-1) ,.....w(t-r) ] T

Here again, w(t) is assumed to be bounded in magnitude. i.e. there exists positive Yo

such that

I w(t) 1 T0 (3.2.2)

Since the values of the noise sequence {w(t) ) are not available, the regressor vector

D'(tI) is not known exactly. If, however, at time t, an estimate of 0.

O(t) = I al(t), ... a, (t) c, (t), ...c r (t) IT (3.2.3)

is available. w(t could be estimated by the a posteriori prediction error(also called the
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residual error by some authors)

E(t) = (t) T T(t)(D(t) (3.2.4)

where

cI(t) = [ y(t-1), .. y(t-n) , £-(t-1) . ... £(t-r) ] T (3.2.5)

Now just as in the ARX case, define for some suitable -y 2, the set

S-= ( 0: (y(t)- 0TctD(t))2 < y 2 ,0E Rn+r 

and the bounding ellipsoid

n, T -I
Et={0eR n ' r (0-0(t))T P (t) t)) < a(t) ( (3.2.6)

The update equations for 0(t), P(t) and C 2 (t) are as in Section 2.3, with the only

difference being that the regressor vector is now given by (3.2.5).

As in the OBE algorithm, the bounding ellipsoids are optimized by choosing /6 to

minimize &2(t). In order to facilitate the subsequent analysis, the initial conditions are

modified to

P(O) =MIn-r , 0(0)=0, and y2(0)<y 2  (3.2.71

where M>>I. and I is the identity matrix of dimension n+r.

This choice of initial conditions ensures that the initial ellipsoid E0 will contain the

true parameter vector 0* and more importantly, as shown in Appendix 3A. simplifies

the optimum forgetting factor X* formula to

If 2(t-l) + 82(t) < y2 then 2t* = 0, 3.2.8i

otherwise
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1-F3(t) if G(t) = 1 (3.2.9a)

2

[e- r+ G(t)if G(t) 1 (3.2.9b)1+-() Gt) 1

where

'2
P(t) A a (t-1) (3.2.9c

8"(t)

Remarks

(1) It is shown in Appendix 3A that if a 2(t-1) + 82(t) > y2 then given by (3.2.9)

satisfies

da 2 (t) =0

d t  t

and furthermore 0< <* <1. Thus unlike the case in Section 2.3, no upper bound need be

imposed on the forgetting factor.

(2) Since &2(t) = U2(t-1) if< = 0. any non-zero value of 2,* which minimizes (72(t,

will cause a 2(t) < a 2(t-1). Thus choosing ,t* to minimize &2(t), causes {2(t)}to be a

non-increasing sequence.

The recursive relations (2.3.5) - (2.3.7), the initial conditions (3.2.7), the selective

update strategy (3.2.8.) and the forgetting factor determination formula (3.2.9) form the

Extended Optimal Bounding Ellipsoid (EOBE) estimation algorithm. The choice of the

threshold y2 will become clear from the analysis below. The algorithm retains the

discerning update strategy and the modular adaptive filter structure of the DHOBE

algorithm.
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3.3 Convergence Analysis of the EOBE Algorithm

The main difficulty in the analysis of the EOBE algorithm arises from the presence of

the a posteriori prediction errors in the regressor vector. Unlike the OBE algorithm, in

this case. boundedness of w(t) does not guarantee that all the sets St.t=l.2.. will contain

0*. The first step in the analysis is to find conditions under which this happens. The

minimization of &2(t), at every time instant, and the choice of initial conditions (3.2.7),

facilitate the characterization of the behavior of the a posteriori prediction errors.

Lemma 3.1. For the EOBE aizorithm, if (y2(t-l + 6 2 (t) > ', i.e.. if an update

occurs at time instant t. then

(i) y2 (t) + £ 2 (t) = y2, (3.3.1)

(ii) E2(k) < E2 (t) for all time instants k < t, (3.3.2)

and if t+j is the time instant at which the next update occurs then

(iii) E2(k) _< E2(t) for all k < t+j. (3.3.3)

Proof:

(i) It has been shown in Appendix 3A. that if &2(t- I + 62(t) > 72 then. the optimum

forgetung factor .*, satisfies

d "cy (t) = 0 (3.3.4)

Taking the derivative in (2.3.5) and using (3.3.4) yields

C, 1 (1-kL) 2 (t) ,t 52 (t) G(t)
-- 't-1 - (3.3.5a)

1-k I+k,.tG(t) (1-k L+)L,.tG(t) )

which can be rewritten in the form

(1 - ,)-tG(t)

Y- 2(t-I = 5"(t) t (3.3.5b)
(1 - XL+ k,.tG (t) ):
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In (3.3.5) and in the remainder of the chapter, when there is no risk of confusion, the

optimum forgetting factor * will be denoted by X,. The a posteriori prediction error

E(t) = y(t) - 0T(t)(D(t) = y(t) - 0 T(t-1)(D(t) - )ht (T(t) P(t)(D(t) 8(t)

Thus

E(t) = [I - Xkt (T(t) P(t)4(t)] 6(t)

Multiplying P(t) in (2.3.7) on the left by (DT(t) and right by ()(t) yields

1-.

1-XT(t(t)t(t) - t

Thus

1-k

E(t) = 6(t) (3.3.6)
1 - Xt + Xt G(t)

Note that the non-negativeness of G(t) implies that E2(t) 8 62(t). Substituting (3.3.6) in

(3.3.5b) and rearranging terms yields

2, X ,,G(t) _a(t) (3.3.7.)
(I kt) 7" 2_ 0 -k ) Cr 2(t- 1) = ( 1 -kt) C W t) 11 -X t

Now using (3.3.6) in (2.3.5) gives

I I k JG (t)
3r(t)= (1- )O2it- 1) + k t X, -'E-(t)- E-(t) (3.3.8)

1-A.

Finally, subtracting (3.3.8) from (3.3.7) gives (3.3.1).

(ii) Case I If k < t, is an updating instant. Then (3.3.1) gives

2(k) + c2(k) = y2  (3.3.9)

But since { &'2(t)} is a non-increasing sequence, (3.3.9) and (3.3.1 ) together would imply

that

E2(k) < E2(t)

Case2 If k < t, is a non-updating instant, then E2(k) = 82(k) and so by (2.3.8).
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a 2(k-l + E2(k) _ 'y2 . and since 0"2(t) is non-increasing, E2(k) <_ E2(t).

(iii) Since -k , k = t+l. t+2,.., t+j-1, are all zero, a 2(k) = 2(t), for all t < k < t+j. And

because k is a non-updating instant, ay2 (k-l) + =2(k) =&2(t) + E2(k) < 2 , and so

(3.3.3) follows.

Remark

Lemma 3.1 shows that the the sequence u, squared residual errors evaluated at the

updating instants is non-decreasing. Furthermore, the squared residual error at any

non-updating instant is not greater than the squared residual errors at the updating instants

immediately prior and after the non-updating instant. This characterization of the squared

residual errors is useful in deriving sufficient conditions under which the convex

polytopes S, and E, will contain 0*.

Theorem 3.1.The sets S, and consequently the ellipsoids Et, t = 1,2... will contain the

true parameter, if

() E0 contains 0* . (33.. 1Oa

ii) The true moving average coefficients satisfy

I c I < 1.0 (3.3. 10b

(iii)The threshold 7 satisfies

yO/ 1 +11
y l ic1 (3.3.10c

I1- 1cil

i=1

Proof. Let the induction hypothesis be 0* E E,-,. Then defining

V(t) = (0 (t) - 0* )T p-l(t) (0(t) - 0*) (3.3.11)

and recalling the definition of E. 1 yields
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V(t-1)< o 2(t-1) (3.3.12)

and since P-'(t) is positive definite for all t. &2(t-1) > 0. Now using (3.2.1) and (3.2.5)

yields

y(t) - O*T (D(t) = C(q-l)[w(t,)] - (C(q-1) - 1)[ E(t)] (3.3.13)

where the operator C(q -1 ) has been defined in (3.1.7). Defining n(t) = C(q-1 )[w(t)] then

yields

IV(t) - 0*T 1(t) I < I n(t) I + I c1 E(t- 1 ) + c2 E(t-2)...+ c, E(t-r) I

But

ln(t) 1 < Y ,forallt

where
r

7 0(1 + Y lcil (3.3.14)

i=1

Hence

Jy(t) - O*T (D(t) I _ + ( Ic1l IE(t-1)l + Ic21 IE(t-2)1+ ... + Icr] Ie(t-r)I ) (3.3.15)

But by Lemma 3.1. if t-j is the updating instant immediately preceding time instant t, then

IE(t-i)l < I(t-j)l for 1< i _< r

Thus

ly(tj-o*T (D(t)t  < 7, _ IE(t-j), Icil (3. 3. 16)

i=1

Now E2(t-j) = 2(t-j) = v2 - &2(t- 1). By the induction hypothesis. 2(t-1) _ 0.

Hence

I £(t-j) 1 y

and so
r

ly(t)-0*T (t), !5 y' + y7 Icil

So St will contain 0* if
r

7, + y7 IcIl _< y (3.3.171
i=1
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The inequality (3.3.17) will hold iff (3.3.10b) and (3.3.10c) are true. Assuming

(3.3.10b) and (3.3.10c) thus guarantees that for all time instants t

(y(t) - O*T (D(t) )2 < y2  (3.3.18)

Using (2.3.6) and (2.3.5). it is easy to show that

V(t) = (1- .t )V(t- 1) + t(y(t) -*T (D(t)) 2 
-t (1- t)52(t) (3.3.19)

I -Xt + XtG(t)

Now using (2.3.5) in the above equation yields

V(t) - C2 (t) < (1- ))(V(t-1 ) -C 2(t-1) ) + [(y(t) - 6*T (D(t) )2- y_]

and so from (3.3.18) it follows that

Vt) -o 2(t) (1-XZ) ( V(t-1 - 52(t-1) (3.3.20,

Finally, bv (3.3.12). it follows that

V(t)-&2(t) 0 (3.3.21)

i.e.. E, contains 0*. and &2(t) is non-negative for all t.

Remarks

(1) The condition (3.3.10b) implies that the noise sequence n(t) = C(q-l)[w(t)] should

not be - too colored ". It is interesting to see how this this condition relates to similar

conditions which appear in the convergence anaivsis of other parameter estimation

algorithms. A sufficient condition for convergence of the ELS algorithm is that the

transfer function [1/C(q-1 ) - 1/2] be SPR. It is shown in Appendix 3B that. for this

transfer function to be SPR. it is necessary that

r
Ic . 2 < 1 (3.3.22)

i~l

Thus if (3.3.22) is not satisfied. the transfer function is not SPR and so the ELS

algorithm cannot be guaranteed to converge. Coincidentally enough, the condition

(3.3.10b) is identical to the Strictly Dominant Passive (SDP) condition [Dasgupta. 19871

which appears in the analysis of some signed LMS algorithms. In Appendix 3B. it is also
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shown that if (3.3.10b) holds then [1/C(q- 1) - 1/2] is SPR. However, the converse is not

true. For example if C( q-1 ) = 1 + 0.8 q-1 + 0.15 q-1 0.15 q-2 then [1/C(q -1) - 1/2] is

SPR. but C( q-) does not satisfy (3.3.10b). Thus this condition is more restrictive than

the SPR condition.

(2) Selection of the right " noise bound" Y'2 is made possible by (3.3.10c). The user

would, however, need to have some knowleage of the magnitude of the true moving

average coefficients. It is interesting to see that as the moving average filtering of { w(t) I

increases (Y-cil increases), the bound y2 is required to increase, to guarantee that the true

parameter is contained in all the sets St and ellipsoids E, . Simulation results show that

overestimation of y2 has very little effect on the parameter estimates (centers of the

bounding ellipsoids), though it may have an adverse effect on the size of the bounding

ellipsoids.

(3) The theorem shows that V(t) < &2(t) for all t, Since &2(0) < y2 . and {C2(t)}is non-

increasing, the theorem provides instantaneous bounds on the normalized parameter

estimation error V(t).

(4) The conditions (3.3.10b,3.3.10c) are not necessary conditions and the algorithm has

been observed to perform well in several examples where these conditions were violated.

The following result follows straightforwardly from Lemma 3.1 and Theorem 3. 1.

Corollary 3.1. If the conditions of Theorem 3.1 hold then

(a) lim c (t ) exists (3.3.23a)

where t. I is the subsequence of updating instants of the EOBE algorithm. and
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(b) Uniformly bounded a posteriori prediction errors

E2(t) _< y,2, for all time instants t (3.3.23b)

Boundedness of 52 (t), the a priori prediction error, and convergence of the

parameter estimates to a neighborhood of the true parameter can be assured, by requiring

the regressor vector to be persistently exciting. The next lemma relates the positive

definiteness of P-3 (t) to the richness of the regressor vector ()(t).

Lemma 3.2. If there exist positive cx and N such that, for all t
t+ N

( )(i) T(i) > a, I > 0 (3.3.24a)
i=t

then there exists a positive x4 such that

P-(t) > a 4 I >0 (3.3.24b)

Proof of the lemma is the same as that of Theorem 4.1 of [Dasgupta. 19871, it is thus

oritted here.

Remark. The positive definiteness of P-'(t) implies that the eigenvalues of P(t) are upper

bounded.

Theorem 3.2. If the assumptions of Theorem 3.1 are satisfied and (3.3.24a) holds then

the EOBE algorithm ensures :

(a Parameter difference convergence

lim 11 0(t) - 0(t-k) II = 0 (3.3.25)

for any finite k.

(b) If. in addition. the process (1.1) is stable then the algorithm yields asymptotically

bounded a priori prediction errors
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(t) - [O, y (3.3.26)

c) If the moving average coefficients are further restricted to satisfv

r2

ci ] < 0.5

then an asymptotic bound on the parameter estimation error can be obtained

10(t)-0 - - [ 0. 2 y (1+1 Ici )2 / (x.] (3.3.27)

where y,, and ox are as in (3.2.2) and (3.3.24b) respectively.

Proof.

(a) From (2.3.6) and (2.3.7)
-, ( t) p 2 (t _ I) (t) 5-2tW

11 O(t) - O(t-1) - 3.3.28)
I- l + X G(t) )2

.2 G(t) 2 (t
< em.(( P(t- 1) } I ( .3. 2 9

(1- + k G(t))-
t t

where emax (P(t-1)} is the maximum eigenvalue of P(t-1). and 11. denotes the euclidean

norm. To see how (3.3.29) follows from (3.3.28). consider an' positive semi-definite

symmetric matrix A and vector x. Then

x7 Ax = xT A A-' Ax = v1 Av

where v = Ax. But
TAv > emin[A- I]y, Ty

where emra, refers to the minimum eigenvalue. Since ema,(A I/ /Cr(A -1 . hence

Tv _ ema, [A IxTAr

and thus
T A.ArX<e max[AI.X Av
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Now multiplying both sides of (3.3.5a) by ,t, and using (2.3.5) yields

2 2 (t) G(t) (3.3.30)

5i(t) = a-(t- 1) - - + 2, G(t) )2

The non-negativity of q2 (t) therefore implies

i 27 82 (i) GOi)
= (0i G T (t) < 0 (3.3.31)

I_ - + k. G(i)

Hence

,2 6 2 (t)G(t)

im A 0 (3.3.32)
1 -- 1-I - 2. G(t) ')

If (3.3.24a ) holds then bv Lemma 3.2. ema, ( P(t- 1), the maximum eigenvalue of P(t- 1).

is bounded for all t , and hence (3.3.29) and (3.3.32) yield

II 9(t) - 0(t-1) II --> 0 (3.3.33)

Applying the Minkowski inequality to 110(t)-O(t-k)i and using (3.3.33) completes the

proof of (3.3.25).

(b) Stability of the process (3.1.1 and the boundedness of w(t) implies that the outputs

v(t are bounded. Hence from (2.3.16) (3.3.23b). and Lemma 3.2. it folows that

G(t) _< ermax {P(t-1) }H r't + n max v(i) ] <
t-n _< i_ t-I

where n is the order of the AR process and r is the order of the MA process. It can now

be shown. just as in Theorem 3.2 of [Dasgupta. 1987], that the a priori prediction errors

satisfy (3.3.26).

(c) From (3.3.16)

y(t-*T t) _2y' + 2FIcil ~cit - j)
• L
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Assuming
r

[ ci I < 0.5

then yields

(y(t) -0 *T c1(t)) 2 < 2'2 + E2(t -j)

Substituting in (3.3.19) and using (3.3.6) gives
2(t " 1G(t) (

V(t)=(1-k1)V(t-1)+k[t27"+E(t- J)- '(t) (3.334

From Lemma 31. E2(t-j) <E 2 (t), where t-j is the updating instant prior to time instant t.

Thus

V(t) - 2 2 < (1- )[V(t-1) - 2y2

For large enough t. the term on the ight hand side goes to zero and hence for large

enough t

V(t) = (0 (t) - 0* )T P-1(t) (0(t) - 0*) < 2 2

And so (3.3.27) follows from Lemma 3.2 and (3.3.14).

Remarks:

I I The results of Theorem 3.1. and the results (3.3.25), (3.3.26) of Theorem 3.2. do

not require the process to be stable (A(q- 1 = 1 - a1 q-I - a2 q- 2... a. q-n. to be

Hurwitz). However if the process is unstable, then the a priori prediction errors will

become very large. thereby causing overflows. In addition, on account of finite precision

effects. the matrix P) may not stay positive definite, thus invalidating the notion of

bounding ellipsoids and causing the algorithm to fail. In this situation, the ELS algorithm

will fail, too.

(2) Theorems 3.1 and 3.2. do not impose any statistical properties on the input

sequencefw(tK}. However our simulation experience has been that the parameter
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estimates are biased if the input is not white. Of course, such is also the case, for the ELS

algorithm. The EOBE algorithm uses the boundedness property of the inputs to construct

confidence regions (ellipsoids) for the parameters, irrespective of the color of the inputs.

This feature is absent in any of the existing ARMA parameter estimation algorithms.

(3) The upper bound given by (3.3.27) is usually looser than the bound

II 0 (t) - 0* 112 < &2(t) / a4 , yielded by (3.3.21).

3.4 Simulation Studies

Simulations have been performed to investigate the performance of the EOBE

algorithm vis a vis the ELS algorithm. In this paper, we present simulation results for

three examples- a broad band ARMA (3,3) process, a narrow band ARMA(2,2) process

and an ARMAX(3,3,2) process.

Example 3.1 Broad band ARMA (3,3) process

The output data {y(t)) is generated by the following difference equation

y(t) = - 0.4 y(t- l) + 0.2 y(t-2) + 0.6 y(t-3) + w(t) - 0.22 w(t- 1)

+ 0.17 w(t-2)- 0.1 w(t-3)

The noise sequence { w(t)) is generated by a pseudo-random number generator with a

uniform probability distribution in [-1,1]. The upper bound 7 2 was set equal to 25.0. and

(y2(0) = .y2 -0. 1. The parameter estimates were obtained by applying the EOBE algorithm

to 1000 point data sequences. Twenty five runs of the algorithm were performed on the

same model but with different input noise sequences. The average squared parameter

error L1 (t), is computed for the AR coefficients according to the formula

25

L1 (t- = Y Il(t)

where I, (t). the squared AR parameter error at time t for the j'th run. is defined by
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n

(ai ( t) - ai )2

with a- and ai(t) being defined by (1.1) and (3.3), respectively. The average squared

parameter error L2(t) for the MA coefficients is defined analogously. Fig. 3.1 and Fig.

3.2 display the average squared estimation errors for the AR and MA parameters using

both the EOBE and the ELS algorithms. The curves show that the performance of the two

algorithms is comparable. The average number of updates for the EOBE algorithm was

160 for 1000 point data sequences. Thus only 16% of the samples are used for updates.

as compared to the ELS algorithm which updates at every sampling instant.

The effect of different choices for the upper bound y2 on the performance has also

been studied. For each value of y2. the asymptotic mean-squared parameter estimation

error (MSPEE) was computed over 25 runs of the algorithm, according to the formula

25

NvSPEE =- 2 1 10(1000) -0 I2
j=1

where Oj(1000 is the parameter estimate at the 1000'th iteration, in the j'th run. The

lower bound on y-, as calculated from (3.3.10c) is y2 > 8.54. The second column of

Table 3.1 lists the different values of MSPEE obtained when v2 is varied from 0.5 to

100. In each case. y2(0) = y2 - 0.1. The third column lists the average number of

updates. The fourth and fifth columns enumerate the average number of times the true

parameter is not contained in S, and E, respectively. The last two columns provide

measures of the average final volume and average final sum of semi-axes respectively. It

is clear that the centers of the bounding ellipsoids are insensitive to the value of 2, since

the tap error is almost constant. though the final size of the ellipsoids is ven, sensitive to

*/2. This can be explained as follows.

The update equations (2.3.6) and (2.3.4) for the parameter estimates and the matrix
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P-1 , can be affected by y2 only through the forgetting factor k., From (3.2.8), it is clear

that the update decision depends on whether 82(t) is greater than or less than [Y2 -

a 2 (t- 1)]. If 82(t) is greater than [72 - &2(t- 1)] then, from (3.2.9), the calculated value of

,t again depends on y2 only through [y2 - y2(t-1)]. But from (2.3.5), Y2 -o 2(t) depends

on yz only through the quantities y2 - Cy2(t- 1), 72 - ay2(t-2), .. , - - 2(0). So for all time

instants t, y2 -&2(t) is a complicated function of the data, 0(0), P(0), and [yZ - (Y2(0)],

and consequently, k., P(t) and O(t) depend on y2 only through [Y2 - o2(0)]. Thus, since

this difference is constant in the above simulations, the parameter estimates are unaffected

by the value of 12. However, the final size of the ellipsoids depends on aY2 (t) , and since

vZ -cy(1000) is constant for all values of y2, the final size is proportional to y2. When Y-

= 0.5, (y2(1000) is negative and hence the final ellipsoids do not exist.

TABLE 3.1

V2 T Avg. Avg. Avg. Avg. final Avg. final sum
(dB) updts 0*1 S, 0" Et  volume of semi-axes

0.5 -15.34 156 292 949 -

1.0 -15.34 156 13 0 0.22 10.46

2.0 -15.36 156 0 0 2.6x10 4  74.08

5.0 -15.34 156 0 0 5.4x10 7  264.91

25.0 -15.35 156 0 0 2.1x10 12  1536.92

100.0 -15.39 156 0 0 L.Oxl016  6303.29

The performance of the algorithm, when the noise sequence { w(t) has a gaussian

distribution, was evaluated in a similar fashion. A constant value of y2 =25 was used and
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the standard deviation of the input was varied. The results for 25 runs of the algorithm

are shown in Table 3.2. It is clear that the unbounded noise has marginal effect on the

parameter estimates.

TABLE 3.2

S.D T Avg. Avg. Avg. Avg. final Avg. final sum
of input (dB) updts O" St 6*1 Et  volume of semi-axes

0.5 -4.9 90 0 0 5.6x10' 2  1574.6

1.0 -5.95 105 0 0 4.89x10 8  333.4
2.0 -5.98 114 12 26 1.47x10 2  19.5

5.0 -6.29 119 323 965 -

The tracking capability of the EOBE algorithm was compared with that of the ELS

algorithm (with forgetting factor=0.99). The same model was used to generate 400 data

points. The parameters were then changed by 150% and the next 400 points were

generated. Finally the last 200 points were generated bv using the original parameters.

The average squared parameter error was evaluated over 25 runs and is shown in Figure

3.3. Even though the formulation of bounding ellipsoids is based on the assumption that

the parameters are constant, the simulation results show that the algorithm is able to

accommodate changes in model parameters. Analysis of the tracking ability of the

algorithm is the focus of Chapter V.

As mentioned earlier, the transient behavior of the EOBE algorithm has been

observed to be superior to that of the ELS algorithm in a number of examples. To
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demonstrate this, ten Monte Carlo runs of the EOBE and ELS algorithms are performed

with data records of 50 points each.The parameter estimation error at each instant, (W"'-0

(t) )T (0"-o (t ) and the a priori prediction error are averaged over the ten runs and

displayed in Fig. 3.4. and Fig. 3.5 respectively. The parameter estimates of the ELS

algorithm tend to wander outside the stability region in the transient stage. thus causing

unacceptably high prediction error bursts. The inherent stability mechanism of the ELS

algorithm. however, ensures that the estimates do return to the stabilitv region. The

transient estimation error of the EOBE algorithm, in contrast, is well behaved.

Example 3.2 Narrow band ARMA (2,2) process

The output data I y(t) } is generated by the following difference equation

yct) = 1.4 v(t-) - 0.95 y(t-2) + w(t) - 0.86 w(t-1) + 0.431 w(t-2)

Note that in this case, condition (3.3.10 b) of Theorem 3.1 is violated. The noise
sequence is uniformly distributed in -1.0,1.01, as in the first example. The upper bound

y Z was set equal to 25.0. The average squared AR and MA parameter estimation errors

are calculated over twenty five runs and plotted in Fig. 3.6 and Fig. 3.7 respectively. The

average number of updates was 78 for 1000 point data sequences.

For this example too. different values of the upper bound y 2 were used and no

significant difference in the quality of estimates, number of updates or convergence rate

was obseived. Thus, it is verified once again that a precise knowledge of the upper

bound is not a prerequisite for satisfactory performance of the algorithm.

Example 3.3 ARMAX(3,3.2) process

'(t 0.6vt- I ) -0.3v(t-2) + 0.25yt-3) +3.8u(t -1.8u(t- I) +0.7u(t-2)

+ w(t) + 0.4w(t- I ) -0.1 w(t-2)
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The measurable input sequence Iu(t))and the non-measurable input/noise sequence

{w(t)) are uncorrelated white noise sequences uniformly distributed in [-1,1]. The EOBE

algorithm can be used for ARMAX parameter estimation, by simply increasing the

dimension of the parameter vector and extending the regressor vector to include the

observable inputs. The analysis performed in the previous section is still valid. In the

ARMAX estimation problem, if estimates of the MA coefficients (the coefficients of

C(q - 1) ), are not required, then the OBE algorithm can also be used, by modeling the

svstem with an ARX model. For the EOBE algorithm, y 2 =10 and Cy2(0)=10. For the

OBE aigorithm, V 2.5, and 02(0)= 10. P(()) = 1, in both cases. Ten Monte Carlo runs

of 1000 data points each were performed for the EOBE and OBE algorithms.The average

final parameter estimation error for the EOBE algorithm was 0.157 and the corresponding

error for the OBE algorithm was 0.69. For the EOBE algorithm

(i) The sample mean

E[0(1000)] = [0.53, -0.27, 0.24, 3.79, -1.52, 0.63, 0.45, -0.0 7 ]T

(ii) The average final volume = 6.2x1010

(iii)The average final sum of semi-axes = 498.47

(iv) The average number of updates = 61

For the OBE algorithm

(i) E[0(1000)] = [0.76, -0.42, 0.27, 3.82, -2.41, l.1I] T

(ii) The average final volume = 224.25

(iii)The average final sum of semi-axes = 112.47

(iv)The average number of updates = 128

Thus the parameter estimates of the OBE algorithm are biased. For the OBE

algorithm, the noise v(t = C(q-1)[w(t)]. and the correlation in vlt) is responsible for the

bias. The EOBE algorithm in contrast, yields unbiased estimates. however the confidence
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regions for the parameters are larger than the confidence regions yielded by the OBE

algorithm.

3.5 Concluding Remarks

The distinctive features of the EOBE algorithm are (i) the discerning update strateg,,

(ii) the uniform boundedness of the a posteriori errors and, (iii) the fact that the true

parameters are guaranteed to lie in the bounding ellipsoids at every time instant.

Unfortunately. the size of these bounding ellipsoids is very sensitive to the choice of

threshold y2. Simulations show that the threshold can be taken much smaller than the

theoretical minimum, thereby obtaining tighter confidence regions, without causing the

true parameter vector to slip out of any of the sets St.In an effort to obtain smaller

ellipsoids, the MVS algorithm was extended, just as in Section 3.2. Unfortunatelv on

account of the more complex optimization criterion used in the MVS algorithm, the

counterparts of Theorem 3.1 and Theorem 3.2 could not be derived. Simulation studies

indicate that the extended MVS algorithm does vield smaller bounding ellipsoids.

however, the parameter i-imares are biased. It is conjectured that the observed

unbiasedness of the EOBE parameter estimates is due to the optimization criterion which

is an upper bound on the normalized parameter estimation error.
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CHAPTER IV

FINITE PRECISION EFFECTS

4.1 Introduction

The behavior of adaptive filtering algorithms in limited precision environments has

attracted an increasing amount of attention lately. The motivation is, perhaps, the

discrepancy between the theoretical infinite precision behavior and the actual performance

of the algorithms when implemented in hardware or simulated on computers. Finite

word-length computations can cause numerical inaccuracy in the results and numerical

instability [Cioffi, 1987]. In the case of the RLS algorithm, it has been known for quite

some time that the recursion for the covariance matrix inverse is numerically unstable

and several factorization methods have been developed to stabilize the recursion

[Bierman, 1977]. Numeric instability can cause some of the variables in an adaptive

filtering algorithm to become unbounded fairly rapidly, as in the case of fast least-

squares algorithms [Cioffi, 1984]. On the other hand, the accumulation of round-off

errors can cause the widely used LMS algorithm, and even the stabilized RLS algorithm,

to diverge after millions of iterations. In the case of real time signal processing, at a

sampling rate of 8 kHz, this amounts to only a few minutes of processing. It is therefore

imperative to consider the effects of finite precision computations when analyzing or

designing adaptive filter algorithms.

The issue of finite word-length effects in MSPE algorithms has begun to receive

attention only recently. In [Walter, 19881, the potential numerical problems which can

arise with the exact cone updating (F'7U) algorithm are discussed and a robust

64
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modification is suggested. In this chapter, finite precision effects in the DHOBE

algorithm are studied through simulations and by analyzing the stability properties of the

error propagation in the algorithm. Since the update equations of the DHOBE algorithm

are very' similar to the RLS algorithm, the potential problems which can arise due to the

effects of finite word-length in the RLS algorithm are discussed in Section 4.2. In

Section 4.3, a sensitivity analysis of the forgetting factor determination formula in the

DHOBE algorithm is performed, and a modification is suggested to increase the

robustness of the formula. An analysis of the error propagation in the DHOBE algorithm

is performed in Section 4.4 by studying the stability properties of two coupled nonlinear

difference equations. The equations are shown to be BIBO stable and consequently the

error in the estimates is bounded. The effect on the bounding ellipsoid of the errors due to

finite word-length computations, in one iteration of the algorithm is studied in Section

4.5. In Section 4.6. the fixed point implementation of the algorithm is described and

simulation results are presented which show that the DHOBE algorithm yields

consistently good estimates over a large range of word-lengths. In particular, the

performance is superior to that of the RLS algorithm for small word-lengths.

4.2 Finite Word-length Effects in the RLS Algorithm

The update equation for the parameter estimates of the RLS algorithm with forgetting

factor L is given by

0(t) = O(t - 1) + K(t)(t)[y(t) - (D T(t)O(t - 1)] (4.2.1)

where the Kalman gain K(t) is defined by

Knd t P(t - 1)u(t) (4.2.2"+ 0(Dt)(P(t - I)(t

and the matrx update equation is given by
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P(t)=IP(t-1) P(t - )0l(00 t)T (t)P(t _ 1) (4.2.3)

Due to round-off errors, the subtraction involved in (4.2.3) may cause P(t)to become

indefinite (neither positive nor negative definite). The resulting least-squares estimates

will be incorrect. This sign change, however, does not usually result in overflow [Cioffi,

1987]. The matrix recursion can be stabilized by replacing it with a set of recursions that

propagate the upper-diagonal-upper transpose (UDUT) factorizations of the matrix P(t)

[Bierman, 1977]. These recursions ensure that the updating of the diagonal matrix D(t)

maintains positive diagonal entries thereby ensuring that P(t) remains positive definite.

The homogeneous difference equation for the error in the estimates of the RLS

algzorithm is

0(t) = 0(t) - 0* = [I- K(t)(t)T(t)]O(t-1) (4.2.4)

It is easv to show that (4.2.4) is exponentially stable if X < 1 and P(t) is uniformly

bounded [Ljung, 1985] . If k = 1, then only asymptotic but not exponential stability can

be concluded. Round-off and quantization errors appear as inputs to (4.2.4). If the

forgetting factor is equal to unity, then these errors can cause the estimation error to

become very large. This observation is confirmed by the detailed statistical analvsis in

[Ardalan. 1987]. Thus even when the parameters are not time varying, it is advantageous

from a numerical poin of view to use a forgetting factor less than unit,'.

Even after stabilization, the RLS algorithm (with X < 1) may exhibit long term

instability, if the input is spectrally ill conditioned. A heuristic explanation for this

phenomenon [Cioffi. 1987], for the case of a FIR adaptive filter adapting to a moving

average system model is as follows. Assume that the input x(t) to the adaptive filter is

bandlimitcd, i.e. its Fourier transform satisfies

X(e.J0 ) = non-zero, for Iw- mlI < Uh

and
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X(eJ(0) = 0, for Io-c W1 :2 cb

If the filter coefficients of the adaptive filter 0(t) vary very slowly with time, then a

Fourier transform (3(eJ() of the filter coefficients could be defined. Then

O(eJ()X(eJ(0) = non-zero, for co - CW1 < cb

and

8(eJw)X(eJO)) = 0, for co - o 1 > w,

Over the frequency range Ico - co1 > Cob, the filter response 8(eJ(0 ) can take on very large

values without affecting the output error and hence the adaptive filter does not

compensate for this growtn.. This growth then leads to an overflow of the registers

containing the filter coefficients. This unbounded growth can be avoided if a small

diagonal constant is added to P(t) at every iteration, or to the diagonal matrix in the

UDUT implementation.

4.3 Sensitivity Analysis

In this section, the effects of small perturbations in the inputs to the updating gain

determination formula (2.3.8)-(2.3.14) are studied. If the resulting perturbation in K-t is

small, then the change in the estimates P(t), 0(t) and G2(t) is also small. This can be seen

by examining the update equations of the algorithm. From (2.3.4), it is easy to see that

P- (t) is a continuous function of Xt . The partial derivative of P- (t) with respect to ?t is

ap- (t) _ p 1) + D(t)DT(t)

Assme that there exist constants M1 and M2 such that

M1I <__ P-1(t) <- M2)1

and assume further that 11 D(t) 11 is bounded, i.e. the ARX process is stable and has

bounded inputs then
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II t I1< 0
axt

The perturbation AP- 1(t) is thus small if the perturbation in kt is small. It is shown in the

next section that AP(t) = P(t)AP-I(t)P(t). Hence the perturbation in P(t) will be small.

Similarly, (2.3.6) shows that 0(t) is a continuous function of ?'- and that the derivative is

bounded provided the eigenvalues of P(t) are upper bounded and l10(t) II is bounded.

Hence the perturbation in 0(t) will also be small. The derivative of u2(t) in (2.3.5) is
____ (1l- 't) 2 _ tGt

da 2 (t) = 72- a 2 (t- 1)- 52(t) (4.3.1)

CLkt(I - kt+ ktG (t)) 2 (431

Using the fact that 0 < ,t < a <1, it is relatively straightforward to show that

(1-k) 2- ?'G(t) 1
1 ( l _ k t + tG (t) ) 2

The derivative of &2(t) is thus bounded, and so the resulting perturbation in &2(t) is also

small.

To b in, a case in which a small change in 72(t-1) and 51(t) can cause a large change

in the updating gain factor X., is considered. In the subsequent discussion, the quantities

computed with finite precision are denoted by primes. It is also assumed that the

perturbations in the inputs to the updating gain factor are small, i.e. there exists a positive

A << 1 such that

I' 2(t- 1 )-&y2(t- 1)1 < A, 18' 2(t) - 62t) < A, IG'(t)-G(t)l < A (4.3.2)

Consider the following scenario

72(t-l) + 82(t) < y2 but Gy2 (t-1) + 8,2 (t) > -2 (4.3.3)

In this case -= 0 and if 8' 2 (t) = 0, then k' t = ax. Thus the perturbation in the updating

gain factor A?, t = ?' t - ,t can be substantial. It can be shown easily that if (4.3.3) holds
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then there is a significant difference between Xt and k't only if 8,2 (t) is small.

However, 2(t), which is the quantity being minimized, is then marginally affected by the

change in k-. This is because the derivative in (4.3.1) is close to zero since (4.3.2) and

(4.3.3) imply that 82(t) and the difference (2(t-l) - y2) is small. Thus though the

perturbation AXt is large, the difference in the calculated value of a 2 (t) will be marginal.

The large perturbation A;t will cause a large perturbation in the matrix P(t), though the

perturbation in 0(t) will be small since 52 (t) is small. In general, the formula (2.3.8)-

(2.3.14), can cause large perturbations in kt, which only marginally affect the resulting

value of c2(t), if the following condition holds for some E, suitably small

y,/2- 2(t-I)I <e. and 62 (t) <E (4.3.4,

In order to make the updating gain formula more robust, it is modified by adding the

following additional condition to (2.3.10) - (2.3.14)

If I y2- G2 (t-l)I < E and 52(t) < c, for some suitably small E (4.3.5)

then kt = 0

For the modified algorithm if the situation of (4.3.3) occurs then the perturbation in t

would be small and the resulting value of o'2 (t) would be almost optimal. The same is

true if C 2 (t- I )+ 6 2(t) > y 2 and G '2 (t- 1 )+ 6'2(t) < 7 2 However, the modified formula

can in some cases still cause a large perturbation AXt. For example if I cy (t- I ) C <

and 52(t) < c and I y2 -o'2 (t- 1)1 E and 6'2(t) > £, then kt= 0 and k', could be as large

as u. But since 82(t) is no longer negligible, it is clear from (2.3.5) that the decrease in

Cy2(t) is not insubstantial. In general, it is easy to show that for cases in which the

modified formula yields a large value of A), the calculated updating gain factor causes a

significant decrease in ("2.Thus the modification is a compromise between minimizing

72 (t) and reducing the perturbation in the updating gain factor. In contrast using (2.3.8)-

(2.3.14, without anv modification, could cause large AX1, thus causing large

perturbations in O(t) and P(t), while decreasing o2only marginally.
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The sensitivity of the modified formula to perturbations in its inputs is now evaluated,

assuming that the situation of (4.3.4) does not occur for the perturbed and unperturbed

algorithms, since it has already been observed that the modified formula can be quite

sensitive if (4.3.4) holds.

Theorem 4.1. If the perturbation in 2(t-1), G(t) and 82 (t) is less than A, for somc

small positive number A< E, where c is given by (4.3.4), and if (4.3.4) does not hold,

then the perturbation in ;-t is of O(A) provided that c < 0.414.

Proof: The perturbation in the updating gain factor is evaluated assuming that

CF2 (t-l) + 6 2(t) >y 2 and (y'2 (t-l )+ 8' 2(t) > y2 . From (2.3.1l)-(2.3.14), it can be seen

that there are a total of 8 distinct cases in which there can be a perturbation in the updating

gain factor:

Case 1: 6,2 (t)= 0 and G(t) = 1;

Case 2: 6'2(t) and 13(t)(G(t)-l) > 0:

Case 3: 6 2 1t)=0 and l+p3(t)(G(t)-l)< 0:

Case 4: G'(t= 1 and G'(t) = I:

Case 5: G'(t = 1 and l+P3(t)(G(t)-l) > 0;

Case 6: G('t) = 1 and l+P3(t)(G(t)-l) < 0:

Case 7: l+3'(t)(G'(t)-l) > 0 and l+P(t)(G(t)-1) > 0:

Case 8: 1+3'(t)(G'(t)-1) > 0 and l +(t)(G(t)-l) < 0

The perturbation in each case is evaluated now.

Case 1. 6'2 t) = ) and G(t) = I
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Since it is assumed that (4.3.4) does not hold, it follows from (2.3.11) that ,'t = c=x. The

assumption that the perturbation in the inputs to the formula is less than A would imply

that 52(t) < A5 F. Hence P(t) = 2-2 (t-1) < -1. Thus82(t)

Vt = > 0.5. If cx 5 0.5, then ,t = c , and so the perturbation A.t=0.

Case 2. 8'2 (t) = 0 and 1+P(t)(G(t)-1) > 0:

It has been shown above that 3(t) < -1. This together with I+P(t)(G(t)-l) > 0, would

imply that G(t) < 2. Using (2.3.13), it can be shown that when l+P3(t)(G(t)-l) > 0, then
1

vt -v i.e vt > 0.414. Hence if c < 0.414, then t = cc, and so the perturbation

Akt = 0.

Case 3. 8 2 (t) = 0 and 1+[(t)(G(t)-l) < 0:

From (2.3.14) .t = c(x, and hence the perturbation At--0.

Case 4: G'(t) = 1 and G'(t) = 1:
1 -3(t) 1-13(t)

In this case Vt = -- i-- and vt - 2 . Since it is assumed that the situation of

(4.3.4) does not occur, the values of 3(t) and P3'(t) will differ by an amount greater than

O(A) only if 52 (t) is small. But then both P(t) and PY(t) will be large negative numbers

and so C't =t = (x.

Case 5: G'(t) = I and I+[(t)(G(t)-l) > 0:

Let G l 1+ rj , where IT' A. Then from (2.3.13), vt = [+-
+11 P(t)

Hence vt - I, + O(l 2). Thus as in Case 4, the perturbation will be of O(A).

Case 6: G'(t) = I and l +(t)(G(t)-l) < 0:
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From (2.3.14), Xq = x . Since IG(t) - G'(t)l< A, therefore either G(t) = 1+ rl or G(t)= 1-

rj, where r! < A. If G(t) = 1+ 11, then I+[3(t)(G(t)-l) 0 would imply that 13(t) < mi.e.

82(t = O(T"). Hence 8'2 (t) < A + O(Tl) and therefore [3'(t) << -1. Thus X't = t= .

On the other hand if G(t)= I- 1 then I+3(t)(G(t)-1) 0 would imply that 3(t) > 1,
1"1

which contradicts the assumption that (y 2 (t- 1) + 52(t) > y 2.

Case 7: l+3'(t)(G'(t)-1) > 0 and l+[3(t)(G(t)-l) > 0:

An expression for the perturbation Avt is obtained by evaluating the partial derivatives of

vt , from (2.3.13). with respect to 3(t) and G(t). For brevity, the time suffix is dropped

in the expressions below

AV v-AP +-0VAGap G

where

ap (211+ [3(G-1)] 31/2

and
' -G + [3G + [3 - 2P3G 2 1

aG 2,G(G-l) 2 [1+ 1(G-l)] 3/2

It can now be assumed that there exists a positive 11, suitably small such that

IG-11 > 1, and l[3(G-1) > T1.

This is because if, say, IG-11 < r, then, as in Case 5, V = v -- I and therefore as

discussed in Case 4, A?. is small. If 0 <l+3(G-1) < rI, then from (2.3.13) v'>>l and

so -'t =t = (x. The above assumptions along with the assumption that G(t) is bounded

ensure that the partial derivatives are bounded and hence there exist KI and K2 such that

IAvt I _ K1 IA[3(t) 1+ K2IAG(t)I
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Thus if the perturbation AP(t) and AG(t) is of O(A) then the perturbation Akt is also of

O(A).

Case 8:1 +J'(t)(G'(t)- l) > 0 and l +P(t)(G(t)- 1) < 0:

In this case, .t = c. If IG'(t)-lI _<fl for some small number rI, then as in Case 6,
j3'(t ~ l1-4'(t)

V0t <- I and as in Case 5, Vt--- >> 1, and hence ?-'t = a.,1 2

If G(t) differs sufficiently from unity then either l+P'(t)(G'(t)-l) is very small or else

P3(t) and 13(t) differ greatly. If l+P'(t)(G'(t)-l) is small then from (2.3.13) V't > a, and

so kt= ct. On the other hand 3'(t) and 13(t) differ substantially only when 62 (t) is small

(assuming (4.3.4) does not hold). Then by the same argument as in Case 2, 1 = .if

ot < 0.414.

VVV

4.4 Error Propagation in the DHOBE Algorithm

The error propagation properties of the DHOBE algorithm are analyzed by focusing

on the propagation of a single error in 0(t) and P(t) to future instants. Assume that at time

instant to there is a perturbation due to round-off error in the estimates 0(t0 ) and P(t), so

that 0'(t0 ) = 0(t) + A0(to) and P'(t 0 ) = P(t 0 )+AP(t0 ), where, the primed quantities are

the perturbed ones. The problem considered here is the effect of these errors on the

estimates 0'(t) and P(t) at t > to, assuming that the computations are performed with

infinite precision. Similar studies have been performed by Ljung and Ljung [Ljung.

19851 in their investigation of the error propagation properties of RLS algorithms.

Though the update equations of the DHOBE algorithm are similar to those of the RLS

algorithm. the presence of the updating gain factor, which is a discontinuous function of

the estimates, complicates the analysis. In particular, the results on perturbed linear

differential equations (used in [Ljung, 19851 ) cannot be applied. Error propagation in the
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DHOBE algorithm is investigated by performing a first order perturbation analysis of

two coupled nonlinear difference equations. The analysis yields coupled difference

equations whose homogeneous parts are exponentially stable. An upper bound on the

error in the estimates due to finite precision computations is given by the following result:

Theorem 4.2. If the following assumptions hold:

(i) The matrix P(t) is well conditioned, i.e. there exist positive rT. and 112 such that

0 < 1II < P(t) < 112 I for all t (4.4.1)

(ii) The ARX process is stable and has bounded inputs.

(iii) The unperturbed algorithm yields bounded prediction errors,

(iv) For some integer M, if the unperturbed algorithm has M updates in an interval of

time, then the perturbed version updates at least once in that interval,

(v) At the updating instants of the perturbed algorithm, a lower bound p is set for the

updating gain factor kt', where p is a suitably small positive number.

Then there exist constants ml and h which depend on the bounds on the prediction

error of the unperturbed algorithm and the inputs and outputs of the process such that the

error between the perturbed and unperturbed quantities at the updating instants ( tk I of the

perturbed algorithm is bounded as

S (I (p) iAP(0) + ri; m, max AX M 1-(l-p)k/ (4
1"I - 1<uk U p

j'AO(t,) I _< (l-p) k^, 1 II AO(t o ) 11 + T11 h max lAX, I -- II - (l-p) ] +
N - 1 <jk '2 p

+ h--I max IIAP(t )Ii
Ti I l k (4.4.3)

where rlI and T12 are as in (4.4. 1).
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Proof:

Define R(t) = P'1(t). Then

R(t) = (Il-Xt) R(t- 1) + XtdI(t) (DT(t) (4.4.4)

Assume that R(t) and 0(t) are perturbed by an infinitesimal amount at time instant to. The

perturbed quantities at any time instant t, will satisfy

R'(t) = (I1-Xt') R'(t-1) + kt4((t) aDT(t) (4.4.5)

where, as before, the perturbed quantities are denoted by primes. Subtracting (4.4.4)

from (4.4.5) it follows that

ARMt = (1 -?,t') AR(t- 1) - AX.t [tD(t) IDT(t)- R(t- 1) 1 (4.4.6)

where

AR(t) = R'(t) - R(t) and Ak, =kY - ''(4.4.7)

The difference equation (4.4.6) can be expressed as

AR(O=J(- ' )AR(t0 ) + AXPtD(t)OI7 (t) -R(t-1)) + I(t) (4.4.8)
i =t +I ±

where

~ 7(1IX AX .f[(tjDt-j-j - R(t-j-1) 1 (4.4.9)
j=LOi-I l=J-*l

The summation in (4.4.9) can be taken over the subsequence ( t,- u 1, 12... )of instants

at which updates are performed for either the perturbed or the unperturbed algorithm.

This is because at all other instants i , AXj 0-0 =0. Also, by the assumptions (1) and (11)

of Theorem 3.2. there exists a constant nm, > 0, such that for all t,

Thus at any instant tk E tu)

k-I k
III (t k)I M,1 I 7 ( I-X ) (AX, (441

u=1 r=u+I



76

Now assumption (iv) of the theorem implies that every M consecutive elements of the

subsequence { tu contains at least one instant at which the perturbed algorithm performs

an update. Thus at least Lk/Mj,(where L.j denotes integer par), updates of the perturbed

algonthm have occurred at time instant tk. Then using assumption (v), (4.4.11) can be

expressed as
-,) k/Mr!

I I(I I <m max IAX I[M-i + M (i-p + (1-p2 ...+ i-p) ) ] (4.4.12)
1<u<k- I .

For example if k=10 and M=3, then in the worst possible case, i.e. one in which the right

hand side of (4.4.11) would be the largest, there would be only one update in the

pc-turbed algorithm for every three instants of { tu }. Hence from (4.4.1 1) an upper bound

on I I(tk ) 11 would be

H I(tK) ii _ m1  maxIA ., I [1+1+3(1-p)+3(1-p)- ]
1!5i<9 t

Upper bounding the first and second terms in the right hand side of (4.4.8) and using

(4.4.12) then yields the following expression for the norm of the error in the matrix R(t)

at instants tk which are updating instants for either the perturbed or the unperturbed

algorithm

k/M -I
iIAR(tk)EI < (1-p) IIAR(to)1 + m Imax IA? I M (4.4.13)

l!u<_k u p

Thus the perturbation in R(tk) is bounded. Note that no approximations were required to

obtain (4.4.13). In order to obtain an upper bound on the error in P(t), a first order

analysis is performed. It is assumed that

1IAR(t) II = O(c). with c <<"rin( R(t) ) where ?,nn refers to the minimum eigenvalue.

Then

P(t) R'-I(t) = (R+kR(ARt)) - = R-I(t) - R -(I) AR(t) R- It) + A1  (4.4.14)

where ii A. 11 = 0( E2 . Neglecting 0( C2) terms yields
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AP(t) = Pu) - P(t) = P(t)AR(t)P(t) (4.4.15)

Th us

11 AP(t) 11 T12 2 11 LXRWt 1 (4.4.16)

Simiularly, neglecting 0( E2 ) terms yields

I I AR (t) I I 1111j12 11 ApWt)I1 (4.4.17)

where Tr and T12 are defined in (4.4. 1). Finally, using ',4.4.i6) and (4.4.17) in (4.4. 13)

%viclds (4.41.2).

From (2.3.6) and (2.3.7). the time recursions for 0(t) and 0'(t) can be expressed as

HOt = I - /^K L( T(t) + K' Lmt \'(t) (4.4.1IS

and

0,t [I - ' L'(t, (DT(t) I+ K lL'(t) v(t) (4.4.19)

where

L(t) = NOt 0(t) (4.4.20Oi

Subtracting (4.4.18) from (4.4.19) and performing some manipulations yields

SO) = I - K IL'( t T(t) I AO(t 1 )+ I A;X.t L(t) + ?.t1'AL(tj I [y(t) - cJ)1 (t)0(t- 1 )1 (J~ .4.2 1

or

A t I- /h, L'(t)cIIJ(t)j AO(t-l 1 + J, (t) + J-2 (t) (4.4.22)

wxhere

J t A ' Lwt (v (t) - (I)T(,)O(t- I) = ?K t.Lt) 6(t) (4.4 23a)

and

J-=t A'., (v(t) - (Dr(uOt- I /= /1 5L(t) 6(t) 44.b

S incc.

[I j<L tI(DT(tUjI 1"(t) P- I (t- I1 (4.4. 24;

Thcrctr (4.4.22) canl flc cxPrcVsCwd a,

t I - /. )1 ft P I (t- I AOt- I J t) - 4.4.2
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Solving the difference equation (4.4.25) yields

7t[ (1-; ) P'( L P IIt0 )AO(t ) + J, t) + J Jt + J{t (4.4.26)
H= t+ 

J

where

O = (1J i ) P'(t) P',-(j) A Lj 5(j) {4.4.27a
= -. I i =j-I

and

J, (t) ) p ,(j X AL(jj 5(j) (4.4.27b)

Sine: the perturbation AR(t) is of order c. from (4.4.15) the perturbation AP~t) is of the

same order. In order to facilitate the analysis, it is assumed that AK c = 0(). Then

substituting for Ljh from (4.4.20) and neglecting O(E2) terms vields
t- I t

.1~tI J 1-X i P (t) AX (D(j) 6(j) (4.4.28)
j= to I i = *

f lence

AlJ){tW < , max [I j11I(Di( I 01- i-  A , .4.4.29 ,

.\ssumptions ii and (iii ensure that there exists a constant h > . such that

II(,(j) .1 I _(j < h <

Now . as before. the upper bound (4.4.29) is evaluated at the updating instants of the

perturbed and the unperturbed algorithm. The summation of products in -4.4-21 can b

upper hounded as in (4.4.13) bv

I1 A/. max A12 , I M - I M(] I -P - I- ) 'I 1 Hu1k I

t tece,
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Ilii (tk) + [J(t)I rh max lAX IM -IPLkM (4.4.30)

Since AL(j) =APj)(), after neglecting second order terms (4.4.27b) becomes

J-t1 ~ 7( ~)~ P(t) P- (j) AP(j) (j)6(j) (4.4.31)
LO,1 i j+I

Thus

J,(t)II + 11 J-4(t)II ! h max 11 AP(j) 11 (4.4El-32)K

I J~t ~~

In Appendix 4A, it is shown that the term in the square brackets in (4.4.32) is less than

unity and so combinin2 (4.4.26). (4.4.30) and (4.4.32) yields

I:A0O(t I I -P kM -1 11 A0\11+ qh max WlAX I- I N +
- 1 J~k tp

h2ma-x IIAP(t )ll
Th l! j!k -i

Thus the perturbation in the parameter estimates is also bounded.

Vv V

Remarks

I ) Assumption (1v) is a technical artifice which facilitates the analysis. It is highly

Unlikely that it would ever be violated. Violation of this assumption would imply that the

squared prediction error for the perturbed algorithm is upper bounded by y , for large

durations of time. Then. p .vided the input and noise sequences are sufficiently rich and

uncorrelated. it is easy to show that 11 0,(t) - 0* 11 2 < 0y 2 ) for those inten~als of time.

2) Assumption (,-) is a technical device required to ensure that the homogeneous parts of

4.2and 14.1are exponentially stable. If p 0.001. then in practice thc values of'

i. t the mpain nstants will usually be larger hnp
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S3 Thougzh the analysis of error propagation has Ignored the effmc of round-off errors in

computations. since the homogeneous parts of (4.4.2) and (4.4.3) are exponentially

stable. the errors at any time instant due to round-off errors created at previous time

instants would be bounded [Ljung, 19851.

4.5 Finite Precision Effects on the Bounding Ellipsoid

In this section. the effect of round-off errors (in one iteration) on the resulting

noundinLe ellipsoid is studied. Mlore specifically, we ask the question - If 0 e .ti can

errors in the computation of E1 (ie. computation of 0(t). P(t) and a(t) cause i= L

Define (t OL-O*. Then from (2.3.6)

(t = ;(t-lI +xPt(ta) + A (4.5.1)

where AI is the round-off error. Similarly from (2.3.4)

P- I(t) I l-k) P- I(t-1I) + X.t ((t)(DT(t) + A-) (4.5.2)

and

140~~ ~ &(tt )+ I, -kt 5 - 2 (t) ~ ~ ~ 453

I _ t 1t 4D~~-I)IT( t) 3

Define

At = (t- 1 ±+ X.P()Nt 6(t) (4.5.4)

and

B1 t I -k) P- I(t- 1 ) + j (D(t)(IVTt) (4. 5. 5

Then. after neglecting second and higher order terms in A1 and A,. it canl he shown 1 that

V(u= AtTBt At + AITA-2At + AlT Bt At4 AT Bt Al (4. S.t

where

VWt =G(t) P- t) W( (4.5.

Expanding AtT Rt At as in Section 3.3 and uISIneL (4.5.31 vield,,
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V(t)-o 2(t) = ( 1 -X) [V(t- 1 )- 0 2(t- 1)] + X [v2(t)- 21

+ 2AIT Bt At + AtTA2At +A3  (4.5.8)

From the definition of E, it is clear that *e Et iff V(t) < 2(t). Thus if the errors A1 ,

A2, and A- are large enough, it is possible that 0* i Et. A sufficient condition for 0* E

Et is

I 2AI" Bt At±tTA2AtI < X- y72 - v2(t)] (4.5.9)

In case = 0, then since no update occurs 0* c Et automatically. The condition (4.5.9)

shows that if the errors due to finite word-length computations are small enough then

6*E Et and furthermore, by setting y2 higher than the actual bound on the noise. the

robustness of tne aigorithm to finite precision effects can be increased.

4.6 Simulation Studies

Simulation Setup,. A fixed point implementation of the OBE algorithm was simulated

by performing the operations in integer arithmetic. The input and output observations,

which are generated as floating point numbers, are converted to integers by the formula

INT( x. 2'l + 0.5) , x > 0

x
quan 

=

INT( x. 2's, - 0.5) . x < 0

where ibit is the number of bits assigned for the integer representation of the fractional

part of the real number x. In the simulations, since an integer is stored in 32 bits, all

registers and word sizes are 32 bits. Multiplication is performed by foiiiing the product

in a 48-bit word, scaling down by 2- ,, and then rounding off to the nearest integer.

Inner products are formed similarly by accumulating the products in a 48-bit word.

scaling down and thcn rounding off.
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In order to minimize the effect of round-off errors and finite word-length storage, the

recursions of the DHOBE algorithm are implemented as shown below

0(t) = 0(t-l) + K(t)6(t)

8(t) = yt) - 0r(t-1) (t)

X. P(t- 1) (t)
K(t) -

I -X,+XG(t)

G(t) = T(t) P(t-1) (t)
P(t)= [I_-K(t)(DT(t)]IP(t- 1)

=2(t) (I -t) 0y2 (t- I)+ ktY 2 _t (y 2 2 t

-Xt+ )t DT(t)P( [-1 )(T(t )

Notice that the only difference between these equations and (2.3.5)-(2.3.7) is that the

parameter estimate update is performed using P(t-1) and hence errors introduced in the

formation of P(t) do not affect 0(t).

The upper bound c on the forgetting factor, has to be chosen with care in the fixed

point implementation of the OBE and EOBE algorithms. If c is chosen greater than 0.1,

then the elements of the matrix P often increase rapidly in magnitude and overflows can

occur. The reason for this is that in the initial stages. the optimum value of the forgetting

factor /-. equals c(x fairly often. Consequently, since 1- /k appears in the denominator of

(2 3.7i. the magnitude of the elements of P can increase and cause overflows. On the

other hand, if cx is chosen too small then the algorithm takes more iterations to converge

and the number of updates increases. A value of ax =0.1 was found to yield a satisfactory

convergence rate and inhibit overflows in the update equation for P(t).

In addition to cx , the initial value o2(0) has to be chosen small enough to prevent

overflows in the subsequent calculations of k. This is because if, at any time t. (7- (t-1

is large and 81(t) is small then 3 = (y2-G2(t-l))/ 61(t) can become a very large negative

number and the product P(G-1) can overflow. However, if overflows can he detected
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and a saturation value is used for 13, then the calculation of . will not be affected. Since 1

is negative and large in magnitude. I!+P(G-l is a large positive or negative number

depending on whether G is greater than or less than unity. In case 1 +(G- I ) is positive,

then it can be seen from (4) that v, is greater than unity, and consequently ;.= o.. On the

other hand if 1 +13(G- 1) is negative then A= (x from (4). Thus large values of (72(0) can be

used if care is taken to account for overflows in the algorithm for calculating X.

Alternatively, the formula can just set (x = a if 62(t) is smaller than a suitably small

number. the In the simulations, the initial (unquantized) value y2(0) =100.

For the RLS algorithm. the initial value P(0) is also important. Since the bias in the

estimates is inversely proportional to P(0. P(0) should be large. However if P(0 is too

large, then finite word-length effects can cause the Kalman gain vector K to overflow.

and the parameter estimates to grow exponentially in the initial stage [Ardalan. 1987].

Therefore a compromise value - P(0) = 10 I was chosen.

Simulation Results

The performance of the DHOBE algorithm is compared to that of the RLS and

the exponentially weighted recursive least-squares (EWLS) algorithms. for three different

processes. In all the cases, the noise sequence {v(t)} and the input sequencei ut))are
generated b a pseudo-random number generator with a uniform probability distribution

in [-1.0, 1.01. The upper bound y 2 is set equal to 1.0. The parameter estimates are

obtained by applying the DHOBE, RLS and EWLS (with weighting factor 1. =0.99) to

1000 point data sequences. Ten runs of the algorithm are performed on the same model

but with different noise sequences. The number of bits used for the fractional part. ibit, is

varied from 16 down to 6 bits and the average of the parameter error 10 10" U 2 is

computed for each value of ibit.



84

Example 4.1hFig.4.1) AR(5) process

-0.326 v t-1l -0.427 v t-2) -0.717v(t-3) -0.288 -,,,t-4) - 0.399 v( -5

It can be seen from Fig-,. 4.1 that the performance of the DHOBE algorithm appears to be

constant as the number of bits varies from 16 to 8. In contrast, the performance of the

RLS and EWLS algorithms degrades for ibit ! 8. For the RLS aiizorithmn the P matrix

did not remain positive definite in many runs for ibit 8 . For the EWLS algor-ithm. this

happened for ibit < 1-2.

-O- OE

-4 ULS
-CF BVLS 9;

II0

210

S 10 12 14 160 1

Number of bits Oibit)

FiL~ure 4.1 Average parameter estimation error for the DI lOBE

and R.LS algorithms for an AR(S) process

Example 4.2 (FI2. 4.2) ARX(2,3) process

v~ti =l.6v( t- I )-0.83vi t-2 1+0. 14u( t) +u( t- 1) +0.1 6u t-2 ) -VI

As before, the average tap error of the DHOBE algorithm appears constant as iiou Vanes

from lb to 8 bits.T hle P matrix became neiiative definite for ihit b OThe RLS and EWLS

algorithms do not work well for ibit 10. In fact P became indefinite f0'r ibit <- 14. 11"

the EWVLS case.
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0
-0- OBE
-- RLS

-- EWL-S

-10

-20

-30

- 0I * I I * I

6 8 10 12 14 16 18

Number of bits (ibit)

Figure 4.2 Average parameter estimation error for the DHOBE

and RLS algorithms for an ARX(2.3) process

Example 4.3 (Fig. 4.3) ARX(10,10) process

The DHOBE algorithm worked well for ibit > 12. However for smaller values, P

became indefinite and overflows occurred. For the RLS case, P became indefinite for ihit

< 14. In order to study the performance of the DHOBE algorithm at smaller word-

lengths. a UDU* factorization of the P matrix was performed. The DHOBE update

equations are identical to the update equations of the weighted RLS algorithm with weight

dt /t. and forgetting factor ? (t) = (1-4t) and hence the UDU' form of the DHOBE can

be easily developed [Ljung, 1983, pg. 334] . The UDU' form of the DHOBE algorithm

is then compared to the UDU' form of the RLS algorithm. The simulation results show

that for larger word sizes, the performance of the RLS algorithm is superior. Fo, smaller

values of ibit, the average parameter estimation error is about the same for both the

DHOBE and the RLS algorithms.
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10

- OBE

-2 RLS
-a UDU' (OBE)

- 14 0- LUDU'(RLS)

-16

-I I I * I

4 6 8 10 12 14 16 18

Number of bits (ibit)

Figure 4.3 Average parameter estimation error for the DHOBE

and RLS algorithms for an ARX(10.10 process

Discussions

Example 4.3 shows that the performance of the UDU' versions of DHOBE and RLS

algorithms is comparable at smaller word-lengths. The superior performance of the

straightforward implementation of the DHOBE algorithm, as compared to the RLS or

EWLS algorithms at smaller word-lengths is therefore primarily due to the superior

numerical properties of the recursion for the matrix P(t).

The update equation for the RLS algorithm with a forgetting factor A is

P(t) I- P(t-1 )I (t)IT (t) P(t- 1) (4.6.1
, + (T(t)P(t- 1) (t) A

The corresponding equation for the DHOBE algorithm can be rewritten as
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P(t) I [ - P(t- 1)(D(t)(i)(t) ]P(t-l1)

- I 1-k.t  (4.6.2)

-+ OT(t)P(t- 1 )D(t)

Sincc I- k, plays the same role in the DHOBE algorithm as does ;. in the RLS algorithm.

the oniv difference between (4.6.1) and (4.6.2) is that the factor (1- X, V , appears in the

denominator of the term within braces in (4.6.2) as opposed to the corresponding term '-

in (4.6.1). The degradation of performance occurs primarily because the term within

braces becomes indefinite on account of round-off errors. Since X, is usually much smaller

than unity, the term which is being subtracted from the identity matrix in ( 1.6.2) is much

>malier than the one in (4.6.1). Thus P(t) in the RLS alorithm has a greater tendency to

become indefinite than the P(t) in the DHOBE algorithm. This observation has been

,:ontirmed by examining the eigenvalues of P(t), for runs in which the RLS algorithm

pertormed poorly.



CHAPTER V

TRACKING ANALYSIS

.1 Introduction

Performance analysis of adaptive filtering algorithms is usually performed b%

assuminE that the unknown system which is beine modeled i time-invaant. However.

:tri -a: - racnce. adaptive tilters are often used in time varvine environmen>. and nencc

it is inortant to characterize the performance of these aiuorithms when the system model

ramutters can var.\ with time. A considLrable amount of attention has been maid to thi.,
prohie" in the adaptive .-iltenr~ literature, with analysis beine performed mainly for the

LNIS arid RLS aigorithms. with varving amounts Uo r .. Se for exampie (''idrow.

19761. [Benveniste. 19821. [Eleftheriou, 1986], [Rao. 1988]. [Gunnarsson. 19891. It

wa, mentioned in Chapter II that the incorporation ot a foregettine factor in tIhc DHOBE

aiconim is expected to enhance its tracking performance. in this chapter. the tra,.ine

enharateristl s or the aoritn.. are studied in some detal:. Thc analysis is. in somel a%%,.

simplified by the assumption of bounded noise. I-owever. as in the previou., cnaper. the

presence of the data dependent updating factor complicates any derivation or expression,

for the tracking error (the error between the parameter estimates and the time varyine

parameters). Time varying parameter estimation using the LMS algorithm has been

analyzed using a deterministic approach in [Anderson. 19831. The exponential stabiiiv o:

the homogeneous difference equation for the error between the parameter estimate. ai(

the true narameter i> used to show bounded parameter estimation error wvne in

parameters are siowiv time varvine. This approach 'ould he used l{r D1-OBi

xx
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aicorithm also but the analysis is complicated by the possibility of a zero updating gain

r:actor-. tnougah. an exponenbal stability type property could still be formulated. Hlowkever.

ror the DHOBE alzorithm (and other membership-set estimation aigorithms) itL is also

eq~uaii'. important to ensure that the time varx'ing true parameters IH*(t) are contatneo in'

the bounding ellipsoids (Et 1L So instead of characterizing trackinLg in terms of the

Parameter estimation error. we seek conditions which will ensure that the time, v,;rvinc_

true, parameter vector is contained in the bounding ellipsoids. This will also Luarantee

Dounde _'i parameter eSL.riation error. Section 5.2 discusses some necessa v au_,, eit

conditions for the ellipsoids to contain 0*(t). It is also shown that if in case a ]IuM,", i" tne!

.meUl TParamete1.r vector 0, causes it to fail outside the bounding eliipsoid. ihen pro%.

um-p I:, not too iarzec. the bounding ellipsoids will move towards H' and vnun

e2ncios: 6'. in Seutton ';.. La rescue device is proposed. which ii arrtIII

e~xistenc-e of ellipsoids in the face of large parameter variations. Simiuiation resu.ts are1

preserlteu in Section .4which show that the DI-{BE algzorithm Is able: to rrick da)\ ciar

abrupt variations in the parameters. The tracking perf -ormance. 1Tn terMS 01-7jo'! 'f

1StIMaIon101 error. it> in manyv case,, comparable to the RLS aiLTOnirnm with T orceLuaI "

~ NecessarN and Sufficient Conditions for Tracking.

As mentioned above. tracking, in the context Of bouindinLT eiiipsoidil puarmeter,

estumation, will meain ensurne that the time varving true parameter vector is :onimneu. in

Me no0uninLT eiinDSOIJ. The tneorems below, present conditions tor pnarameter trac2 Ine

Theoremn 5.1 A\ sufcirucndition tor H*( El Ii

l~rc: lHt. - T tcas~n'_~' _> nJ I~zzii S. t ai~v~~ n~r -T ,

-n f St.P-L oi'% tfIt
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Theorem 5.2 e*(t) e Et if and only if

T / -
-O( t I ))TP -tt II ')(H o t)-O(t lt< t 1)) ) .

where- vtt) is the noise term from 2.2. 1 .

Proof: SubtractinE O*(t) from both sides of (2.3.6) yields

0(t) -06*(t) = 0(t - I -eO + t .P(t)( t)6(t, /5.2.

Then using (2.3.4) it is not difficult to show that
\"(t = (I- [0(t - 1 H0*(t)]P- I -l1)[0(t -I -H - (t)]

.- ')-Z.t ) 5.2.4

', ~z \ ~v asdetined in (s.3. . lsi 2.3.5) now icid,
\ (t -c -{t -- (l ). )[61 I)- ' t)]p -,(t -1)[0( t - , t (t)

Since Ht E1, iff V(t) _<_ (2t, (5.2.2) then follows.

Theorem *7.. shows that h,' choosing ^ to be larger than the actual bound say "I

on 'n-:. , ossible to increase thc trackina capability of the aicoritha. The next

:neore':::e\ ex an upper rounc: on the maximum vanatio2, ,n the arame ir- :or \vhnca

Theorem 5.3 If 0 t-I E -. and /t (i. then 0"(t) EL. i

A ( 1 , (t " [P t I i
-, .. P Pt1 ] I - : ]. ,- "

- t .

x nere.

.A ft) = -*tt, - t-l I5. .."

Jnc )-m, Jnd: 1a, denote miimlumn ana mn&xl 1 e:een\ \ eSDn,.' vIc',

roo>: [ :-,ine '7.." i. it i
, straie(htor,, arl t ,now that
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[{t-l1-0* (t)]P- t - 1)[0( t - 1)-0 * (t) ]

= V(t - 1) + AT(t)P- (t - 1)A(t)+ 2AT(t)P 1 (t - 1)6(t - 1) (5.2.8)

where 60t-1 = 0(t-1 - 0*(t-1). Now substituting (5.2.8) in (5.2.5) yields
V~t) - a'(t) = 01 - k t ) [ V ( t - lI-Cy2(t - 1)] + k, ( 7 ,- -2 )_Y

+01- kt )[ATct)}P- "t - 1)A(t } + 2ATF(t)P-{ 1t - 1)6 (t -1)] (5.2.9)

Since 0*(t-1 E E-1 , therefore V(t-1) < o2(t- I and thus a sufficient condition for

0*(t) = Et is

AT (tPt -1)A(t) +2AT(t)P-l(t - 1)6(t - 1)<  
1 (-/' (5.2.10)

i.e. 0*(t) E E, if
).mnax[P-I 1 t - l)II}] 1 l 2 +211A Wtl 11{0(t -D1)ll)ma,Il t I t - 1]

< ------ {'/ - 7' } 5.2.11

Since \ut-I < (t- l , therefore

10n[-P' (t<1) (5.2.12-kmin[P-l(t - 1)]

Substitutin 5.2.12) in (5.2.11) gives a sufficient condition for 0*{t) EL as

2 t 2(t -I) /Imax'P (t - 1)]/.,a,, P" t-1}]ll A(0t 1 +211A(t11'({-t -

< -5.2.13

Soivin this cuaciratic inequaiitv then vields (5.2.6).

VVV

The noise term v2 in 5.2.6 can be replaced by Y' to yield a bound which can be

calculated at the time instant t. If )4 = 0. then the difference between 7 and y cannot be

exploited to increase the tracking capability of the algorithm. In fact in this caye. 0*{t)

E, iff 0*ut) E EI-1 . Thus if 0*(t} jumps out of E,-]. and no updates are performed at future

time instant, t -i . then 0*(t+in 1 E,+i = Et-l, and the parameter may never be tracked.

Howe\ .r. it can be argued that an update will be performed in a finite interval of time.
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This is shown heuristically, by examining the expression for the magnitude of the

prediction error

15(t)l = I [O(t-1 ) - *(t)]TcD(t) + v(t)I

If no updates are performed for a large interval of time say from time instant i. to time

instant t + N 1 then

I ro(t-l ) e (t+i)]TD(t+i) + v(t+i) 1 < 2 - y2(t- 1)]1/2  7 i = 0,1 ....N

If the input and noise sequences are sufficiently rich, then the regressor vector OUt) will

span the parameter space in all directions and so [e(t-1 -0'(t+1)]T(t-iJ cannot te

arbitrarily small for i E [0, N1]. If Iv(t+i)i approaches its upper bound y. for some i in tht

same interval, and if {v(t)} is sufficiently uncorrelated with the input i u~t) }. then tr

above inequality will be violated and an update will be performed.

If the parameter variation is such that (5.2.2) is violated then O*(t) E Ej. The next

theorem shows that if 0*(t) remains fixed after its jump out of Ej. and if the jump is not

large enough to cause the subsequent ellipsoids Et+i , for i _> 0. to vanish, then the

DHOBE algorithm guarantees that the true parameter will be tracked (encioscd) in finite

time.

Theorem 5.4 Assume that the parameter variation at time instant :. causes *Uti F- E,

Assume further that

(1) After this variation . the parameter remains constant (i.e. the jump parameter case).

(2) &y2(t+il > 0. for i > 0.

(3) The algorithm does not stop updating.

(4) A lower bound p is imposed on q at the updating instants.
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Then there exists a N I > 0, which depends on the amount of parameter variation and the

actual and user set noise bounds such that O*(t) E Et+N,

Proof: Since O*(t) c E, , define

I = O(t)- *(t)JP (t)[6(t)- *(t)j- a(t > 0 (5.2.14)

Assumption (I) will imply that A(H Nit = A(t+l) =0 for arbitrary positive N1I

Substituting in (5.2.9). and iterating yields
S-N. t+N,V(t + N ) (t + N, T=r-I - -i Y i-,N [,,Z(t) -' (5.2.15)

i=t+l i=t+l

where qi~j is defined 'n Appendix 4A. Assumption (3) will ensure that some of the i

0. will be non-ze:o. Since the second term on the right hand side of (5.2.151 i,

negative. and since the first term is non-increasing, the difference V(t+N 1 - 2(t+N

will tend to zero as NI increases. Thus there exists a NI such that

V(t+NI)- CF2(t+N) < 0 (5.2.16)

An estimate of the time N1 required for the ellipsoids to regain the parameter vector can

be obtained by the following analysis.

Assume that there are K updates in the interval lt+l.t+Ni1. From (5.2.15). it is clear

tnat the inecuaiitv (5.2.16) will be satisfied for all K which szitisfv
K K

") qt tK [' - " (5.2.17i)
_[=] j=2

K

where ,t, is the sequence of updating instants. Now let R(K = -q . where the

sum is taken over the updating instants. It is easy to see that
R(K) = ( I- &tK, )R(K-1I + _tK = R(K-1I)+ .tx [1I-R(K-1 I

In Appendix 4A. it is shown that Rt) 1 for all t _ 0. and by Assumption (4). P. P.

hence

R(K) > R(K-h I +p1 l-R(K-I I
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and so

R(K) > (l-p)R(K-1) + p

Thus

R(K) > p + p(1-p) + ..+p(l-p)K -1 = 1-l(-p)K

Thus from (5.2.17). K has to satisfy
rlC£-p)K < ( 1_(I-p)K](,2_- y2)

Hence 0*(t) E Et+N. if the number of updates K. in the interval [t.t+N1] satisfies
13

- --5 .2.1

-log(l -p)

VTVV

5.3 A Rescue Procedure

In many cases when th: parameter jump is large. or if the ellipsoid has shrunk to a

very small size, the intersection of Et-1 and St can be void. In that case. (T2t) can become

negative. thus indicating that a bounding ellipsoid cannot be constructed. To circumvent

this failure of the algorithm, a rescue procedure is proposed. If at any time instant t. G2(t

becomes negative. then &2(t-1 ) is increased by an appropriate amount. thereby increasing

the size of E-1I. Then the intersection of the larger Et-, " t will no longer be void. and

thus an ellipsoid E, will be constructed. Alternatively. Ad be increased, to permit

non-null intersection. However, the former procedure is preferable because it causes 8(t)

to miarate towards (t, thereby reducing the parameter estimation error.

There are essentially two different cases which require calculation of the amount of

increase.

Case '. I+ O(t[Gi-1 I > 0 and vt < (x.

The quantitzies P(t). G(&n. vt.and cx have been defined in Section 2.3. In this case,

d.. , . and so as in Lemma 3.1,
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ar2(t) + E2 (t) = y2  (5.3.1)

Thus Cy2(t) is negative iff Ie(t)l > y. Using (3.3.6) this implies that a 2(t) is negative iff

> - , + ktG(t) (5.3.2)

On substituting for kt from (2.3.13), (5.3.2) can be expressed as

15(01> G(-I if G(t)
,,G(t)(1 + [(t)[G(t) - 1]) - 1

(5.3.3)
and

15(t1> 2y ifG(t) = 1
1 + P(t)

Usingz the definition of 13(t) from (2.3.17) in (5.3.3) and manipulating terms yields a

necessary and sufficient condition for &2(t) to be negative, in terms or cF-' t- 1

(t- 1)< 1 2 (t) + Y 2 [G(t)- I]- y[G(t) - 1J+16(t)l 1
G(t) - [ Gt-= K  ifG t) l

and (5.3.4)

2(t-i) < 62(t) + 2-1 - (t) = K1  ifG(t) = 1

Thus the rescue procedure would replace o2 (t-1) by Kj+ , where . is a positive

constant. to ensure that 2(t) is positive. Using = 1, has yielded satisfactory results inl

simulations.

Case 2. /-. = (X

In this case. from (2.3.5). &2(t) is negative iff

82 YI (~t -1) V2 ](t - x+ x ) - + 0-" 1 (5.3.5)

Thus &2(t) is negative iff
) 8 2 ( )"

7((t-1) ± 1= K,, (5.3.6)I - cc + oaG (t) I - o "x

In this case 72(t-1 I would be replaced by K-, +

5.4 Simulation Results
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The tracking properties of the DHOBE algorithm are studied for an ARX( 1.1) model

y(t) = ay(t-1 )+ bu(t) + v(t) (5.4.1)

The nominal values are a = -0.5 and b = 1.0. The noise {v(t)} and the input {u(t)} is

generated by a pseudo-random number generator with a uniform distribution in [-1.11.

For the DHOBE algorithm, a = 0.2, y = 1.0, and g 2(0 = 100. The parameters are

varied as follows

Case 1. Slow variation in the parameter vector from r = 1.

The parameters a and b are varied by 1% for even, 10 samples, starting from the firsT

sample, and the output data {y(t)} is generated for t =1,2...1000. The final parameter

estimation error is 7.Ox10- 3, the final volume is 3.5x10-2 and the final sum of semi-axes

is 0.52. All the bounding ellipsoids contained the true parameter. The parameter estimates

are plotted against the true parameters in Figure 5.1. From the figure it is clear that the

DHOBE algorithm can track slow time variations in the parameters.

Case 2. Slow variation in the parameter vector from r = 500.

The parameters a and b are varied by 1% for every 10 samples, starting from the 500

sample. The final parameter estimation error is 3.0x10 -3 , the the final volume i>,

5.0x10 -2 and the final sum of semi-axes is 0.54. All the bounding ellipsoids contained

the true parameter. The parameter estimates are plotted against the true parameters ill

Figure 5.2. The figure shows that the algorithm can track slow time variations in the

parameters even after it has "converged".

Case 3. Jump in the MA parameter at t = 500.

The parameter b is changed by 100% at the 500th sample, and a is kept constant at i,,

nominal value. The true parameter vector is out of the bounding ellipsoids from t = 500.
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to t = 530. after which it is regained by the bounding ellipsoids. The final parameter

estimation error is 1.3x0 "4 . the the final volume is 4.Ox1O-3 and the final sum of semi-

axes is 0. 14. The jump thus appears to have resulted in bounding ellipsoids with smaller

sizes. The parameter estimates are plotted against the true parameters in Fig. 5.3. Fig. 5.4

shows the parameter estimates obtained for this case by applying the RLS algorithm with

a forgetting factor X t = 0.9. Fig. 5.5, shows the estimates when the variable forgetting

factor proposed by Fortescue and Kershenbaum [Goodwin, 19831 is incorporated into

the RLS algorithm . This variable forgetting factor k(t), is a function of the prediction

error and is given by
.(t) t )

1 +G(t

A value of ou = 0.01 was used because it yielded steadv state tracking error of about the

same magnitude as the DHOBE algorithm. From these figures, it is evident that the

DHOBE algonthm can track jumps in the parameters at least as well as the exponentially

weighted RLS algorithm.

The effect of varying ^- was studied. A value of v2  " was taken. In this case, the true

parameter did not Jump out of the bounding ellipsoid at t = 500. The parameter estimares

are identical to those in Fig. 5.3. But the ellipsoids are larger. as expected. with the final

volume = 3.4 and sum of semi axes = 4.08

For a different run. i.e. with a different input and noise sequence. the jump at t =

500. caused ( 2 (t) to become negative. The rescue procedure was then used with

remarkable results. The true parameter was captured at t = 501. The final parameter

estimation error = 2.4x10 - . the final volume = 5.8x10 -2 . and the final sum or semi-

axes= 0.65. Fig. 5.6 shows that the parameters are tracked extremely rapidly in this case.
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CHAPTER VI

CONCLUSION

This report has focussed in on the bounding ellipsoid approach to membership-set

parameter estimation. It has been shown that the OBE algorithms often yield lower

estimation error in comparison to least-squares algorithms, when the unknown-but-

bounded noise does not satisfy the usual stationary and whiteness assumptions. The OBE

algorithms are thus viable alternatives to conventional parameter estimation algorithms in

many real life applications.

Previous work in the area of membership-set parameter estimation has concentrated

on parameter estimation of models with known inputs and outputs. In this report, one of

the OBE algorithms- the DHOBE algorithm- has been extended to perform parameter

estimation of linear models with unknown-but-bounded inputs. The extended al2orithmn

0ossesses all tne advantageous features of the OBE algorithms such as a discerning

update strate,. time varying parameter tracking capability and robustness to numerica,

effect.,. The transient performance of the algorithm has been observed to be superior to

that of the ELS algorithm in simulations. This is particularly advantageous when the

number of data points is small. Analysis of the extended algorithm has shown that the

algorithn yield, 100% confidence intervals for the parameters at every sampling instant.

The analvsi, of the extended algorithm requires less restrictive assumptions than the

analvscs or tI- extended least-squares or recursive maximum likelihood alaorithms.

Analvsi of the finite precision effects in the DHOBE algorithm has shown that thL

algorithm I, stable with respect to errors due to finite wordlength computations and

104
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storage. A detailed analysis of this nature has never been performed for any of the other

existing MSPE algorithms. Furthermore, simulation results show that the matrix

recursion involved in the DHOBE algorithm is better conditioned numerically than the

corresponding recursion in the conventional recursive least-squares algorithm.

The tracking characteristics of the DHOBE algorithm have been studied in detail.

Some necessary and sufficient conditions for parameter tracking have been derived. It has

been shown theoretically and through simulations that the algorithm can track small

variations in the parameters. A procedure has been suggested, whereby large jumps in the

parameters can also be tracked.

The work performed in this report can provide a spring board for several areas of

future research. The connection between the OBE algorithms and the weighted least-

squares algorithm could perhaps be exploited to develop fast ( O(N) ) implementations.

It may turn out that the numerical properties of these implementations are superior to

those of the existing fast least-squares algorithms. Another promising research direction

is to recast the OBE algorithms in an output error formulation. The algorithms could then

be used to obtain unbiased estimates for ARX models with output noise, which arc

commonly used models in adaptive control. The use of the OBE algorithms in reduced

order modeling is also an interesting application. If a bound on the maximum allowable

modeling inaccuracy is specified, the OBE algorithms could be used to generate a class of

reduced order models which can approximate the unknown large order system. Thus

there exists a gamut of applications where the OBE algorithms can be applied and in fact

prove to be viable alternatives to conventional parameter estimation algorithms.



APPENDIX 2A

Derivation of the Bias Expression (2.5.4)

The system model is an ARX(1,1) model

y(t) = x y(t- 1) + b0 u(t) + v(t) (2A. 1I

where the measurable input u(t) is white and uncorrelated with the noise vlt). and

v(t) = A sin (Loot) + (1-A )wt) 2 A.2

with wit) being a white noise sequence.

Define

n(t) = A sin (coot) (2A.3)

The predictor model is

A
y(t) = a y(t-1) + b u(t) (2A.4

The RLS algorithm, at time instant t = N minimizes
yt (t)]- 2A.

N=]

The RLS solution thus satisfies

y(t j-1N-1 [x - a~y(t -1)+(b 0 - b ) u ( t ) + v (t)]  u(t) j (A

In order to obtain an expression for the asymptotic bias the following definitions are
made.

Let pt and q(t) be two signals. Define the sample expectation

E[p(t)j= lim 77Ip(t) (2A.7
N--*, N t=1

and the sample cross correlation

106
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IN

R (i) = E[p(t- i)q(t)]= lim N i) q(t) (2A.8)

provided the limit exists. Then from (2A.6) the RLS solution asymptotically satisfies
Rw (1)

a = x ,- (2)A. 9)
R VV(0)

and

b= bo (2A.10)

Thus the estimate of the moving average coefficient is unbiased.

To obtain an expression for the bias in the AR coefficient. the sample correlations i

(2A.9) are evaluated. Multiplying the L.H. S. and R.H.S of (2A.1) by y(t . taking

sample expectations and exploiting the fact that u(t) is white and uncorrelated with v(t

,ields

,yy (0) =x , y (1) + bo2 g2 + Rvv (0)

But since w(t) is white

R, (0 = Ryn (0) + (1-A) 2 Cy,

Hence

R,V (0) = x R,,, (1 + 0 o- + (0 + (1-A) 2 G; 2A.1I

It is easy to show [Ljung, 1987, pg. 28], that

E[n 2(t)] = A2  (2A.12)

and
A2

E[n(t)n(t-t)j = A- ot (2A.13

Now multiplying both sides of (2A. 1) by n(t) and taking sample expectations yields

Rn(0) = x Ryn (1) + Rnn (0) (2A. 14)

or alternatively

Ejv(t)n(t)j= lim v(O?) X + liN (2A.15)
S 

(= 

N= i= t
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Since -v < I to enure a stable system, the first term on the right hand side of (2A.15)

vanishes. Using the fact that the series x n(t)n(t - i) converges, it is not difficult to
i~l

show that
N N

E[v(tln(t)] = lim -' n(t)n(t-i) (2A. 16)
i=I N

which using (2A.13) yields
A2  N

E[y(t)n(t.) = - lim ' X cosc(oi (2A.17)
2 N + i=1

Bv expressing x as ec', the infinite sum in (2A.17) can be evaluated to yield

E[ yt )n(t] = 1 - x cos CO() 2A.18
t :2 1-2xcoscoO+(-2

And so usina (2A.12) and (2A.14)

E[yt - ln(tI = R,,,(1- (2A.19
21 - 2x cos w( + x

Since v(t) is white, therefore. Rvv (1) = Ryn (1).

Now multiplying (2A.1) by y(t- 1 . and taking sample expectations as in (2A. 11 vields

Rvy (1) = x Rvy (0) + R n (1) (2A.20

Using I2A.11 and (2A.20) to solve for Ryy (0) then vields
SA[t-xcoswol ..

P,, (() = + O y-b +(I -A)-c7 -- 2A.2 1
"-- I ., cos 0, -

Substituting the expressions for R, (0) and , v (1 = P,, (1) in (2A.91 finally yields

A-

A 2cos 2 - x+=- A ~ A 2
A2~ - 2xow 0 ±

+ bW ] + (I - A)2 ,2 UL l v



APPENDIX 3A

Proof of the updating gain formula (3.2.8) and (3.2.9):

Since the optimum forgetting factor * minimizes O'2(t), therefore

o2(t, *) 2(t, 0) = cy2(t- 1) (3A. 1)

and

-",___ " - G-(t- 1 - ~ lX --(tG t (3A._2
d2 t ) (1-+ G(t) -

and

d 2"2(t) 2 52(t) G(t) (3A.3)

dk 2 (1-4+ k G(t) )3

Thus d2 '( t) / d Xt2 > 0. unless 52( t) = 0 or G(t) = 0. Since P(t-1) is positive definite.

Git = 0 iff I(t) = 0. The algorithm can be modified to detect the occurrence of a null

0(t) and set it to a small non-zero value, prior to the calculation of G(t). Thus it can be

assumed that Gut z 0 for all t. If 52(t) = . then, since 72(0) < Z bv (3.2.7). aid s1M,:

o'2(t) is non-increasing, therefore 2(t-I )+82 (t) < y2 and by (3A.2). d&2()/d; 1 is

positive, and hence o'2(t) is minimized if Xt* = 0. Now for the sequel. the second

derivative of 2( t) can be assumed to be positive and hence the unique minimum occurs

at d o&2( t)/dXt = 0. From (3A.2), if G(t) = 1, G2(t) is minimized if

-t *= H1- 0 (t) )/2 (3A.4)

Otherwise if G(t) #l, o.2(t) is minimized if

, _ I [I- G(t) (3A.5)
I - G(t) 1+ 3(t)(G(t)- 1)

Moreover, in (3A.4) and (3A.5)
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k t* > 0 * i3(t)< 1 =- C2(t-1) + 82(t) > y2  (3A.6)

It is easy to show that l+3(t) (G(t)-I) is always positive. Since 0Y2(0) < y2 and aT2 (t) is

non-increasing, therefore 3(t) > 0. From (3A.6), P(t) < 1, hence 1- 1/(t) < 0. Then

l+P(t) (G(t)-1) < 0 =* G(t) < 1- 1/3(t) =* G(t) < 0

which is a contradiction.Thus (3A.5) would always yield real kt. It is now shown that

(3A.4) and (3A.5) yield values of Xt* which are upper bounded by unity.

If G(t)= 1, then since 3(t) > 0, (3A.4) yields Xt* < 1.

If G(t) < 1, then k't* - 1 , 1-[ G(t)/ (1+ [(t)(G(t)-l) ) ]1/ 2 > 1- G(t)

4-:* G(t) (1+ [P(t)(G(t)-l1) ) >t I (3A,.7)

But G(t) < 1 and 3(t) > 0 contradict (3A.7). Hence if G(t) < 1, then Z,7 < 1. It can b-

shown in exactly the same way that G(t) > 1, would imply that Xh* < 1. Thus unlike the

case in [Dasgupta, 1987], no upper bound has to be imposed on the forgetting factor.



APPENDIX 3B

A Time Domain Implication of the SPR Cordition

A sufficient condition for convergence of the ELS algorithm is that the transfer
1 1

function H(z' = [--7 - .7] be strictly positive real. This means

Re H(eJWO) > 0 V co e [-mj] (3B. I)

A necessary condition for ( 3B. 1) to hold will now be derived.

Using the definition of H(z-1), ( 3B.1) becomes

Re(-] > 0 V (0e [--9,7] (3B.2)

Now

Ret 1 1 ]-Cie - -cle- 2 .i - -ce-r i oC(eiwm) 2"] = -Re l{ce- " ceY-
1 -o ) 1 +cIe-J +c2e-2j- +Cre-rj

[e I - c, cos o- c-cos2co-..-c, cos rco+ j(c 1 sinc+c 2 sin2w1+..+c, sin rc[I
2 ll+ccoso + c,cos2w+..+cr cos rc- j(c sinw +c, sin 2o - ..±c, sin ro

Rauonaiizing the above expression and taking the real part yields
• ip-i r7-

r-1r

I Cj2 " 2 x(co ) -*1 Ic=., cs j ct

._ (1 - 1 2 2..o A)] (3B.4)
x(L) j=1

where x(cro is positive function of the c's and co, and
r-J

Kj 2Y 2 cici+, (3 B .51
i=1

The SPR condition ( 3B.21) then implies
r-1

1> c+c2+..+c + Kcosico VcoeI-,T.n]
j=l
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Now define
r-1

Ar.(w=XK j cosjco Vc [- ,71]

j=1

Then
r-1

ArI(co) dco = Kj cosjco d= 0
J=1

Hence Ar-i() cannot hav :he same sign for all oe [-Errt. So for some Co. Ar-i(CO)

will be non-negative, and thus
c 2 +c5+..+ c2 < 1

Thus the SPR condition implies that the 12 norm of the impulse response of the filter

C(z- 1)= I + Clz-1 + C2 z-2 + .. Cr z -r , is upper bounded by 2, or in other words, the

coefficient vector [cl, c2, .. Cr]T lies in the unit sphere centered at the origin of r-

dimensional Euclidean space.

Next, it is shown that the condition (3.3.10b) implies that the SPR condition (3B.2)

will hold. It can be seen from ( 3B.3) that
Ie 1 1 > 1 1 -_ (C 2 + C 2 + ..+ C 2 ) - 1 r , il c i

C(e J w 2j x(co) i=1 j=2

Thus 3B.2) will hold if
t-i r

l-(c, +c .+ c)-2X lci Ic1! __0
i=1 j=2

i.e. if

1 -1cll[+]c 2 +..+ cr)- 0

Thus Ic;I < 1 implies that the SPR condition (3B.2) is true.
i=1



APPENDIX 4A

Summability of the Weighting Factors of the DHOBE Algorithm

Define

= f 'i 111(1 - x'j) if I< t(4 .

Then the term in square brackets in (4.4.32) can be defined as

j~t)= +1 4A2

And

R(t) = (I1- ?1")R(t- 1) + ; ' (4 A. 3

Nokk,

R (to+ I) < I

Assume
R(t-1) < 1

Then by (4A.3,1

i. e.

R(t) < 1
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